BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 11566767)

  • 1. Diffusion of macromolecules and virus-like particles in human cervical mucus.
    Olmsted SS; Padgett JL; Yudin AI; Whaley KJ; Moench TR; Cone RA
    Biophys J; 2001 Oct; 81(4):1930-7. PubMed ID: 11566767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antibody diffusion in human cervical mucus.
    Saltzman WM; Radomsky ML; Whaley KJ; Cone RA
    Biophys J; 1994 Feb; 66(2 Pt 1):508-15. PubMed ID: 8161703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoparticles reveal that human cervicovaginal mucus is riddled with pores larger than viruses.
    Lai SK; Wang YY; Hida K; Cone R; Hanes J
    Proc Natl Acad Sci U S A; 2010 Jan; 107(2):598-603. PubMed ID: 20018745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus.
    Lai SK; O'Hanlon DE; Harrold S; Man ST; Wang YY; Cone R; Hanes J
    Proc Natl Acad Sci U S A; 2007 Jan; 104(5):1482-7. PubMed ID: 17244708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macromolecules released from polymers: diffusion into unstirred fluids.
    Radomsky ML; Whaley KJ; Cone RA; Saltzman WM
    Biomaterials; 1990 Nov; 11(9):619-24. PubMed ID: 2090294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Amount of MUC5B mucin in cervical mucus peaks at midcycle.
    Gipson IK; Moccia R; Spurr-Michaud S; Argüeso P; Gargiulo AR; Hill JA; Offner GD; Keutmann HT
    J Clin Endocrinol Metab; 2001 Feb; 86(2):594-600. PubMed ID: 11158014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffusion of Immunoglobulin G in Shed Vaginal Epithelial Cells and in Cell-Free Regions of Human Cervicovaginal Mucus.
    Wang YY; Schroeder HA; Nunn KL; Woods K; Anderson DJ; Lai SK; Cone RA
    PLoS One; 2016; 11(6):e0158338. PubMed ID: 27362256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and macromolecular properties of cervical mucus glycoproteins.
    Carlstedt I; Sheehan JK
    Symp Soc Exp Biol; 1989; 43():289-316. PubMed ID: 2701481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical and functional-structural aspects of human cervical mucus.
    Daunter B
    Scan Electron Microsc; 1984; (Pt 1):343-58. PubMed ID: 6740235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The macromolecular structure of human cervical-mucus glycoproteins. Studies on fragments obtained after reduction of disulphide bridges and after subsequent trypsin digestion.
    Carlstedt I; Lindgren H; Sheehan JK
    Biochem J; 1983 Aug; 213(2):427-35. PubMed ID: 6615445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium-dependent protein interactions in MUC5B provide reversible cross-links in salivary mucus.
    Raynal BD; Hardingham TE; Sheehan JK; Thornton DJ
    J Biol Chem; 2003 Aug; 278(31):28703-10. PubMed ID: 12756239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron microscopy of cervical, gastric and bronchial mucus glycoproteins.
    Sheehan JK; Oates K; Carlstedt I
    Biochem J; 1986 Oct; 239(1):147-53. PubMed ID: 3800974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crossed immunoelectrophoresis of sperm antibodies in human serum and cervical mucus.
    Gradl T; Mettler L
    Int J Fertil; 1975; 20(1):50-4. PubMed ID: 4387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrastructure of the human periovulatory cervical mucus.
    Ceric F; Silva D; Vigil P
    J Electron Microsc (Tokyo); 2005 Oct; 54(5):479-84. PubMed ID: 16006441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron microscopy of cervical-mucus glycoproteins and fragments therefrom. The use of colloidal gold to make visible 'naked' protein regions.
    Sheehan JK; Carlstedt I
    Biochem J; 1990 Jan; 265(1):169-77. PubMed ID: 2302163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermosensitive and mucoadhesive pluronic-hydroxypropylmethylcellulose hydrogel containing the mini-CD4 M48U1 is a promising efficient barrier against HIV diffusion through macaque cervicovaginal mucus.
    Bouchemal K; Aka-Any-Grah A; Dereuddre-Bosquet N; Martin L; Lievin-Le-Moal V; Le Grand R; Nicolas V; Gibellini D; Lembo D; Poüs C; Koffi A; Ponchel G
    Antimicrob Agents Chemother; 2015 Apr; 59(4):2215-22. PubMed ID: 25645853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structures of bovine and human papillomaviruses. Analysis by cryoelectron microscopy and three-dimensional image reconstruction.
    Baker TS; Newcomb WW; Olson NH; Cowsert LM; Olson C; Brown JC
    Biophys J; 1991 Dec; 60(6):1445-56. PubMed ID: 1663794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging and tracking HIV viruses in human cervical mucus.
    Boukari F; Makrogiannis S; Nossal R; Boukari H
    J Biomed Opt; 2016 Sep; 21(9):96001. PubMed ID: 27598560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Barrier properties of gastrointestinal mucus to nanoparticle transport.
    Crater JS; Carrier RL
    Macromol Biosci; 2010 Dec; 10(12):1473-83. PubMed ID: 20857389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The underlying cause of cervical cancer in oral contraceptive users may be related to cervical mucus changes.
    Guven S; Kart C; Guvendag Guven ES; Gunalp GS
    Med Hypotheses; 2007; 69(3):550-2. PubMed ID: 17368751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.