BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

391 related articles for article (PubMed ID: 11566804)

  • 21. A simple method for probing the mechanical unfolding pathway of proteins in detail.
    Best RB; Fowler SB; Toca-Herrera JL; Clarke J
    Proc Natl Acad Sci U S A; 2002 Sep; 99(19):12143-8. PubMed ID: 12218181
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The mechanical fingerprint of a parallel polyprotein dimer.
    Sarkar A; Caamano S; Fernandez JM
    Biophys J; 2007 Feb; 92(4):L36-8. PubMed ID: 17158577
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamics of equilibrium folding and unfolding transitions of titin immunoglobulin domain under constant forces.
    Chen H; Yuan G; Winardhi RS; Yao M; Popa I; Fernandez JM; Yan J
    J Am Chem Soc; 2015 Mar; 137(10):3540-6. PubMed ID: 25726700
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetics from nonequilibrium single-molecule pulling experiments.
    Hummer G; Szabo A
    Biophys J; 2003 Jul; 85(1):5-15. PubMed ID: 12829459
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of core destabilization on the mechanical resistance of I27.
    Brockwell DJ; Beddard GS; Clarkson J; Zinober RC; Blake AW; Trinick J; Olmsted PD; Smith DA; Radford SE
    Biophys J; 2002 Jul; 83(1):458-72. PubMed ID: 12080133
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simulations of multi-directional forced unfolding of titin I27.
    Toofanny RD; Williams PM
    J Mol Graph Model; 2006 Mar; 24(5):396-403. PubMed ID: 16290077
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of Secondary-Structure Folding on the Mutually Exclusive Folding Process of GL5/I27 Protein: Evidence from Molecular Dynamics Simulations.
    Wang Q; Wang Y; Chen G
    Int J Mol Sci; 2016 Nov; 17(11):. PubMed ID: 27886109
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Temperature and chemical denaturant dependence of forced unfolding of titin I27.
    Botello E; Harris NC; Sargent J; Chen WH; Lin KJ; Kiang CH
    J Phys Chem B; 2009 Aug; 113(31):10845-8. PubMed ID: 19719273
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermal effects in stretching of Go-like models of titin and secondary structures.
    Cieplak M; Hoang TX; Robbins MO
    Proteins; 2004 Aug; 56(2):285-97. PubMed ID: 15211512
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computer modeling of force-induced titin domain unfolding.
    Lu H; Krammer A; Isralewitz B; Vogel V; Schulten K
    Adv Exp Med Biol; 2000; 481():143-60; discussion 161-2. PubMed ID: 10987071
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hidden complexity in the mechanical properties of titin.
    Williams PM; Fowler SB; Best RB; Toca-Herrera JL; Scott KA; Steward A; Clarke J
    Nature; 2003 Mar; 422(6930):446-9. PubMed ID: 12660787
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Computational investigation of the effect of thermal perturbation on the mechanical unfolding of titin I27.
    Bung N; Priyakumar UD
    J Mol Model; 2012 Jun; 18(6):2823-9. PubMed ID: 22119788
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of temperature on mechanical resistance of the native and intermediate states of I27.
    Taniguchi Y; Brockwell DJ; Kawakami M
    Biophys J; 2008 Dec; 95(11):5296-305. PubMed ID: 18775959
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Probing osmolyte participation in the unfolding transition state of a protein.
    Dougan L; Genchev GZ; Lu H; Fernandez JM
    Proc Natl Acad Sci U S A; 2011 Jun; 108(24):9759-64. PubMed ID: 21613570
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Unfolding of titin domains studied by molecular dynamics simulations.
    Gao M; Lu H; Schulten K
    J Muscle Res Cell Motil; 2002; 23(5-6):513-21. PubMed ID: 12785101
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamic light scattering and atomic force microscopy imaging on fragments of beta-connectin from human cardiac muscle.
    Marchetti S; Sbrana F; Raccis R; Lanzi L; Gambi CM; Vassalli M; Tiribilli B; Pacini A; Toscano A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 1):021910. PubMed ID: 18352054
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling AFM-induced PEVK extension and the reversible unfolding of Ig/FNIII domains in single and multiple titin molecules.
    Zhang B; Evans JS
    Biophys J; 2001 Feb; 80(2):597-605. PubMed ID: 11159428
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simulated refolding of stretched titin immunoglobulin domains.
    Gao M; Lu H; Schulten K
    Biophys J; 2001 Oct; 81(4):2268-77. PubMed ID: 11566797
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation.
    Lu H; Isralewitz B; Krammer A; Vogel V; Schulten K
    Biophys J; 1998 Aug; 75(2):662-71. PubMed ID: 9675168
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Velocity convergence of free energy surfaces from single-molecule measurements using Jarzynski's equality.
    Harris NC; Kiang CH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041912. PubMed ID: 19518261
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.