BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 11566808)

  • 1. Bilayer reconstitution of voltage-dependent ion channels using a microfabricated silicon chip.
    Pantoja R; Sigg D; Blunck R; Bezanilla F; Heath JR
    Biophys J; 2001 Oct; 81(4):2389-94. PubMed ID: 11566808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Well-defined microapertures for ion channel biosensors.
    Halža E; Bro TH; Bilenberg B; Koçer A
    Anal Chem; 2013 Jan; 85(2):811-5. PubMed ID: 23256755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directional K
    Rondelli V; Del Favero E; Brocca P; Fragneto G; Trapp M; Mauri L; Ciampa MG; Romani G; Braun CJ; Winterstein L; Schroeder I; Thiel G; Moroni A; Cantu' L
    Biochim Biophys Acta Gen Subj; 2018 Aug; 1862(8):1742-1750. PubMed ID: 29753114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic force microscopy imaging and electrical recording of lipid bilayers supported over microfabricated silicon chip nanopores: lab-on-a-chip system for lipid membranes and ion channels.
    Quist AP; Chand A; Ramachandran S; Daraio C; Jin S; Lal R
    Langmuir; 2007 Jan; 23(3):1375-80. PubMed ID: 17241061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstitution of ion channels in agarose-supported silicon orifices.
    Maurer JA; White VE; Dougherty DA; Nadeau JL
    Biosens Bioelectron; 2007 May; 22(11):2577-84. PubMed ID: 17098413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. bSUM: A bead-supported unilamellar membrane system facilitating unidirectional insertion of membrane proteins into giant vesicles.
    Zheng H; Lee S; Llaguno MC; Jiang QX
    J Gen Physiol; 2016 Jan; 147(1):77-93. PubMed ID: 26712851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Reconstitution of large conductance calcium-activated potassium channels into artificial planar lipid bilayers].
    Cheng J; Zeng XR; Tan XQ; Li PY; Wen J; Mao L; Yang Y
    Sheng Li Xue Bao; 2017 Jun; 69(3):305-310. PubMed ID: 28638923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrophysiological recordings of single ion channels in planar lipid bilayers using a polymethyl methacrylate microfluidic chip.
    Suzuki H; Tabata KV; Noji H; Takeuchi S
    Biosens Bioelectron; 2007 Jan; 22(6):1111-5. PubMed ID: 16730973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton conduction in gramicidin A and in its dioxolane-linked dimer in different lipid bilayers.
    Cukierman S; Quigley EP; Crumrine DS
    Biophys J; 1997 Nov; 73(5):2489-502. PubMed ID: 9370442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roles of bilayer material properties in function and distribution of membrane proteins.
    McIntosh TJ; Simon SA
    Annu Rev Biophys Biomol Struct; 2006; 35():177-98. PubMed ID: 16689633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insulating tethered bilayer lipid membranes to study membrane proteins.
    Köper I
    Mol Biosyst; 2007 Oct; 3(10):651-7. PubMed ID: 17882328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence microscopy of piezo1 in droplet hydrogel bilayers.
    Jaggers OB; Ridone P; Martinac B; Baker MAB
    Channels (Austin); 2019 Dec; 13(1):102-109. PubMed ID: 30885080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel method for incorporation of ion channels into a planar phospholipid bilayer which allows solution changes on a millisecond timescale.
    Sitsapesan R; Montgomery RA; Williams AJ
    Pflugers Arch; 1995 Aug; 430(4):584-9. PubMed ID: 7491286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstitution of expressed KCa channels from Xenopus oocytes to lipid bilayers.
    Pérez G; Lagrutta A; Adelman JP; Toro L
    Biophys J; 1994 Apr; 66(4):1022-7. PubMed ID: 7518702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstitution of isolated Ca(2+)-activated K+ channel proteins from basolateral membranes of rabbit colonocytes.
    Liu S; Dubinsky WP; Haddox MK; Schultz SG
    Am J Physiol; 1991 Oct; 261(4 Pt 1):C713-7. PubMed ID: 1928331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recombinant maxi-K channels on transistor, a prototype of iono-electronic interfacing.
    Straub B; Meyer E; Fromherz P
    Nat Biotechnol; 2001 Feb; 19(2):121-4. PubMed ID: 11175724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstitution and functional characterization of ion channels from nanodiscs in lipid bilayers.
    Winterstein LM; Kukovetz K; Rauh O; Turman DL; Braun C; Moroni A; Schroeder I; Thiel G
    J Gen Physiol; 2018 Apr; 150(4):637-646. PubMed ID: 29487088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anionic nanoparticle-induced perturbation to phospholipid membranes affects ion channel function.
    Foreman-Ortiz IU; Liang D; Laudadio ED; Calderin JD; Wu M; Keshri P; Zhang X; Schwartz MP; Hamers RJ; Rotello VM; Murphy CJ; Cui Q; Pedersen JA
    Proc Natl Acad Sci U S A; 2020 Nov; 117(45):27854-27861. PubMed ID: 33106430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Escherichia coli haemolysin forms voltage-dependent ion channels in lipid membranes.
    Menestrina G; Mackman N; Holland IB; Bhakdi S
    Biochim Biophys Acta; 1987 Nov; 905(1):109-17. PubMed ID: 2445378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voltage-dependent formation of gramicidin channels in lipid bilayers.
    Sandblom J; Galvanovskis J; Jilderos B
    Biophys J; 2001 Aug; 81(2):827-37. PubMed ID: 11463628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.