These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 1156701)
1. Solutions to systems of nonlinear reaction-diffusion equations. Rosen G Bull Math Biol; 1975 Jun; 37(3):277-89. PubMed ID: 1156701 [No Abstract] [Full Text] [Related]
2. Non-existence of wave solutions for the class of reaction--diffusion equations given by the Volterra interacting-population equations with diffusion. Murray JD J Theor Biol; 1975 Aug; 52(2):459-69. PubMed ID: 1238878 [No Abstract] [Full Text] [Related]
3. Some analytical results about a simple reaction-diffusion system for morphogenesis. Rothe F J Math Biol; 1979 May; 7(4):375-84. PubMed ID: 469415 [TBL] [Abstract][Full Text] [Related]
4. Galerkin-Ritz procedures for approximate solutions to systems of reaction-diffusion equations. Rosen G Bull Math Biol; 1978; 40(6):853-63. PubMed ID: 743573 [No Abstract] [Full Text] [Related]
5. Bifurcations of nonlinear reaction-diffusion systems in oblate spheroids. Hunding A J Math Biol; 1984; 19(3):249-63. PubMed ID: 6470580 [TBL] [Abstract][Full Text] [Related]
6. Spatial patterns for an interaction-diffusion equation in morphogenesis. Mimura MA; Nishiura Y J Math Biol; 1979 Apr; 7(3):243-63. PubMed ID: 469412 [TBL] [Abstract][Full Text] [Related]
7. Steady state bifurcation analysis of reaction-diffusion equations--a critique. van der Werff TJ; Wilhelm HE Bull Math Biol; 1978; 40(6):865-72. PubMed ID: 743574 [No Abstract] [Full Text] [Related]
8. Stable periodic solutions of the reactive-diffusive Volterra system of equations. Bhargava SC; Saxena RP J Theor Biol; 1977 Aug; 67(3):399-406. PubMed ID: 904321 [No Abstract] [Full Text] [Related]
9. Deriving reaction-diffusion models in ecology from interacting particle systems. Cantrell RS; Cosner C J Math Biol; 2004 Feb; 48(2):187-217. PubMed ID: 14745510 [TBL] [Abstract][Full Text] [Related]
10. Nonlocal Reaction-Diffusion Equations in Biomedical Applications. Banerjee M; Kuznetsov M; Udovenko O; Volpert V Acta Biotheor; 2022 Mar; 70(2):12. PubMed ID: 35298702 [TBL] [Abstract][Full Text] [Related]
11. Nonlinear degradation-enhanced transport of morphogens performing subdiffusion. Fedotov S; Falconer S Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012107. PubMed ID: 24580172 [TBL] [Abstract][Full Text] [Related]
12. Fluorescence correlation spectroscopy and nonlinear stochastic reaction-diffusion. Del Razo MJ; Pan W; Qian H; Lin G J Phys Chem B; 2014 Jun; 118(25):7037-46. PubMed ID: 24877790 [TBL] [Abstract][Full Text] [Related]
13. Pattern formation and morphogenesis: a reaction-diffusion model. Tapaswi PK; Saha AK Bull Math Biol; 1986; 48(2):213-28. PubMed ID: 3719157 [No Abstract] [Full Text] [Related]
14. Mathematical modeling of immobilized enzyme systems. Kernevez JP; Doedel EJ; Thomas D Biomed Biochim Acta; 1985; 44(6):993-1003. PubMed ID: 4038294 [TBL] [Abstract][Full Text] [Related]
15. Analysis of Coupled Reaction-Diffusion Equations for RNA Interactions. Hohn ME; Li B; Yang W J Math Anal Appl; 2015 May; 425(1):212-233. PubMed ID: 25601722 [TBL] [Abstract][Full Text] [Related]
16. Instability of turing patterns in reaction-diffusion-ODE systems. Marciniak-Czochra A; Karch G; Suzuki K J Math Biol; 2017 Feb; 74(3):583-618. PubMed ID: 27305913 [TBL] [Abstract][Full Text] [Related]
17. Pattern formation in morphogenesis. Analytical treatment of the Gierer-Meinhardt model on a sphere. Berding C; Haken H J Math Biol; 1982; 14(2):133-51. PubMed ID: 7119578 [TBL] [Abstract][Full Text] [Related]
18. Pattern sensitivity to boundary and initial conditions in reaction diffusion models of pattern formation. Arcuri PA; Murray JD Prog Clin Biol Res; 1986; 217A():75-8. PubMed ID: 3749163 [No Abstract] [Full Text] [Related]
19. Solving the advection-diffusion equations in biological contexts using the cellular Potts model. Dan D; Mueller C; Chen K; Glazier JA Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 1):041909. PubMed ID: 16383422 [TBL] [Abstract][Full Text] [Related]
20. Mathematical model for diffusion of a protein and a precipitant about a growing protein crystal in microgravity. Annunziata O; Albright JG Ann N Y Acad Sci; 2002 Oct; 974():610-23. PubMed ID: 12446352 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]