These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Morphine-induced in vivo release of spinal cholecystokinin is mediated by delta-opioid receptors--effect of peripheral axotomy. Gustafsson H; Afrah AW; Stiller CO J Neurochem; 2001 Jul; 78(1):55-63. PubMed ID: 11432973 [TBL] [Abstract][Full Text] [Related]
4. Morphine-induced changes in delta opioid receptor trafficking are linked to somatosensory processing in the rat spinal cord. Morinville A; Cahill CM; Aibak H; Rymar VV; Pradhan A; Hoffert C; Mennicken F; Stroh T; Sadikot AF; O'Donnell D; Clarke PB; Collier B; Henry JL; Vincent JP; Beaudet A J Neurosci; 2004 Jun; 24(24):5549-59. PubMed ID: 15201327 [TBL] [Abstract][Full Text] [Related]
6. In vivo pharmacological characterization of SoRI 9409, a nonpeptidic opioid mu-agonist/delta-antagonist that produces limited antinociceptive tolerance and attenuates morphine physical dependence. Wells JL; Bartlett JL; Ananthan S; Bilsky EJ J Pharmacol Exp Ther; 2001 May; 297(2):597-605. PubMed ID: 11303048 [TBL] [Abstract][Full Text] [Related]
7. Morphine and pain-related stimuli enhance cell surface availability of somatic delta-opioid receptors in rat dorsal root ganglia. Gendron L; Lucido AL; Mennicken F; O'Donnell D; Vincent JP; Stroh T; Beaudet A J Neurosci; 2006 Jan; 26(3):953-62. PubMed ID: 16421315 [TBL] [Abstract][Full Text] [Related]
8. Two delta opioid receptor subtypes are functional in single ventral tegmental area neurons, and can interact with the mu opioid receptor. Margolis EB; Fujita W; Devi LA; Fields HL Neuropharmacology; 2017 Sep; 123():420-432. PubMed ID: 28645621 [TBL] [Abstract][Full Text] [Related]
9. Morphine tolerance in spinal cord is due to interaction between mu- and delta-receptors. Riba P; Ben Y; Smith AP; Furst S; Lee NM J Pharmacol Exp Ther; 2002 Jan; 300(1):265-72. PubMed ID: 11752125 [TBL] [Abstract][Full Text] [Related]
10. Fentanyl increases dopamine release in rat nucleus accumbens: involvement of mesolimbic mu- and delta-2-opioid receptors. Yoshida Y; Koide S; Hirose N; Takada K; Tomiyama K; Koshikawa N; Cools AR Neuroscience; 1999; 92(4):1357-65. PubMed ID: 10426490 [TBL] [Abstract][Full Text] [Related]
11. Interactions among mu- and delta-opioid receptors, especially putative delta1- and delta2-opioid receptors, promote dopamine release in the nucleus accumbens. Hirose N; Murakawa K; Takada K; Oi Y; Suzuki T; Nagase H; Cools AR; Koshikawa N Neuroscience; 2005; 135(1):213-25. PubMed ID: 16111831 [TBL] [Abstract][Full Text] [Related]
12. Intramuscular administration of morphine reduces mustard-oil-induced craniofacial-muscle pain behavior in lightly anesthetized rats. Han SR; Lee MK; Lim KH; Yang GY; Jeon HJ; Ju JS; Yoon YW; Kim SK; Ahn DK Eur J Pain; 2008 Apr; 12(3):361-70. PubMed ID: 17768078 [TBL] [Abstract][Full Text] [Related]
13. Interaction between the mu-agonist dermorphin and the delta-agonist [D-Ala2, Glu4]deltorphin in supraspinal antinociception and delta-opioid receptor binding. Negri L; Improta G; Lattanzi R; Potenza RL; Luchetti F; Melchiorri P Br J Pharmacol; 1995 Dec; 116(7):2931-8. PubMed ID: 8680727 [TBL] [Abstract][Full Text] [Related]
14. Morphine can produce analgesia via spinal kappa opioid receptors in the absence of mu opioid receptors. Yamada H; Shimoyama N; Sora I; Uhl GR; Fukuda Y; Moriya H; Shimoyama M Brain Res; 2006 Apr; 1083(1):61-9. PubMed ID: 16530171 [TBL] [Abstract][Full Text] [Related]
15. Effects of naloxone and D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 and the protein kinase inhibitors H7 and H8 on acute morphine dependence and antinociceptive tolerance in mice. Bilsky EJ; Bernstein RN; Wang Z; Sadée W; Porreca F J Pharmacol Exp Ther; 1996 Apr; 277(1):484-90. PubMed ID: 8613958 [TBL] [Abstract][Full Text] [Related]
16. Role of opioid receptors in the spinal antinociceptive effects of neuropeptide FF analogues. Gouardères C; Jhamandas K; Sutak M; Zajac JM Br J Pharmacol; 1996 Feb; 117(3):493-501. PubMed ID: 8821539 [TBL] [Abstract][Full Text] [Related]
17. Morphine priming in rats with chronic inflammation reveals a dichotomy between antihyperalgesic and antinociceptive properties of deltorphin. Gendron L; Esdaile MJ; Mennicken F; Pan H; O'Donnell D; Vincent JP; Devi LA; Cahill CM; Stroh T; Beaudet A Neuroscience; 2007 Jan; 144(1):263-74. PubMed ID: 17055663 [TBL] [Abstract][Full Text] [Related]
18. Chronic agonist treatment converts antagonists into inverse agonists at delta-opioid receptors. Liu JG; Prather PL J Pharmacol Exp Ther; 2002 Sep; 302(3):1070-9. PubMed ID: 12183665 [TBL] [Abstract][Full Text] [Related]
19. Opioid and substance P receptor adaptations in the rat spinal cord following sub-chronic intrathecal treatment with morphine and naloxone. Gouarderes C; Jhamandas K; Cridland R; Cros J; Quirion R; Zajac JM Neuroscience; 1993 Jun; 54(3):799-807. PubMed ID: 7687333 [TBL] [Abstract][Full Text] [Related]
20. The mu-opioid receptor antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP) [but not D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP)] produces a nonopioid receptor-mediated increase in K+ conductance of rat locus ceruleus neurons. Chieng B; Connor M; Christie MJ Mol Pharmacol; 1996 Sep; 50(3):650-5. PubMed ID: 8794906 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]