BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 11567089)

  • 1. Crystal structure of the transcription factor sc-mtTFB offers insights into mitochondrial transcription.
    Schubot FD; Chen CJ; Rose JP; Dailey TA; Dailey HA; Wang BC
    Protein Sci; 2001 Oct; 10(10):1980-8. PubMed ID: 11567089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Saccharomyces cerevisiae mitochondrial transcription factor, sc-mtTFB, shares features with sigma factors but is functionally distinct.
    Shadel GS; Clayton DA
    Mol Cell Biol; 1995 Apr; 15(4):2101-8. PubMed ID: 7891705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystallization and preliminary X-ray diffraction analysis of the mitochondrial transcription factor sc-mtTFB from Saccharomyces cerevisiae.
    Schubot FD; Chen CJ; Rose JP; Wang BC
    Acta Crystallogr D Biol Crystallogr; 2000 Jul; 56(Pt 7):902-3. PubMed ID: 10930839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional conservation of yeast mtTFB despite extensive sequence divergence.
    Carrodeguas JA; Yun S; Shadel GS; Clayton DA; Bogenhagen DF
    Gene Expr; 1996; 6(4):219-30. PubMed ID: 9196077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A human mitochondrial transcription factor is related to RNA adenine methyltransferases and binds S-adenosylmethionine.
    McCulloch V; Seidel-Rogol BL; Shadel GS
    Mol Cell Biol; 2002 Feb; 22(4):1116-25. PubMed ID: 11809803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct roles for two purified factors in transcription of Xenopus mitochondrial DNA.
    Antoshechkin I; Bogenhagen DF
    Mol Cell Biol; 1995 Dec; 15(12):7032-42. PubMed ID: 8524270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of KsgA, a universally conserved rRNA adenine dimethyltransferase in Escherichia coli.
    O'Farrell HC; Scarsdale JN; Rife JP
    J Mol Biol; 2004 May; 339(2):337-53. PubMed ID: 15136037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of three regions essential for interaction between a sigma-like factor and core RNA polymerase.
    Cliften PF; Park JY; Davis BP; Jang SH; Jaehning JA
    Genes Dev; 1997 Nov; 11(21):2897-909. PubMed ID: 9353258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for an early gene duplication event in the evolution of the mitochondrial transcription factor B family and maintenance of rRNA methyltransferase activity in human mtTFB1 and mtTFB2.
    Cotney J; Shadel GS
    J Mol Evol; 2006 Nov; 63(5):707-17. PubMed ID: 17031457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The thumb subdomain of yeast mitochondrial RNA polymerase is involved in processivity, transcript fidelity and mitochondrial transcription factor binding.
    Velazquez G; Sousa R; Brieba LG
    RNA Biol; 2015; 12(5):514-24. PubMed ID: 25654332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 A resolution.
    Vassylyev DG; Sekine S; Laptenko O; Lee J; Vassylyeva MN; Borukhov S; Yokoyama S
    Nature; 2002 Jun; 417(6890):712-9. PubMed ID: 12000971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial transcription initiation: promoter structures and RNA polymerases.
    Tracy RL; Stern DB
    Curr Genet; 1995 Aug; 28(3):205-16. PubMed ID: 8529266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homologs of mitochondrial transcription factor B, sparsely distributed within the eukaryotic radiation, are likely derived from the dimethyladenosine methyltransferase of the mitochondrial endosymbiont.
    Shutt TE; Gray MW
    Mol Biol Evol; 2006 Jun; 23(6):1169-79. PubMed ID: 16533820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Domain 1.1 of the sigma(70) subunit of Escherichia coli RNA polymerase modulates the formation of stable polymerase/promoter complexes.
    Vuthoori S; Bowers CW; McCracken A; Dombroski AJ; Hinton DM
    J Mol Biol; 2001 Jun; 309(3):561-72. PubMed ID: 11397080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis of transcription initiation: RNA polymerase holoenzyme at 4 A resolution.
    Murakami KS; Masuda S; Darst SA
    Science; 2002 May; 296(5571):1280-4. PubMed ID: 12016306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aromatic amino acids in region 2.3 of Escherichia coli sigma 70 participate collectively in the formation of an RNA polymerase-promoter open complex.
    Panaghie G; Aiyar SE; Bobb KL; Hayward RS; de Haseth PL
    J Mol Biol; 2000 Jun; 299(5):1217-30. PubMed ID: 10873447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Region 1 of sigma70 is required for efficient isomerization and initiation of transcription by Escherichia coli RNA polymerase.
    Wilson C; Dombroski AJ
    J Mol Biol; 1997 Mar; 267(1):60-74. PubMed ID: 9096207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The X-ray structure of the DNA-binding domain from the Saccharomyces cerevisiae cell-cycle transcription factor Mbp1 at 2.1 A resolution.
    Taylor IA; Treiber MK; Olivi L; Smerdon SJ
    J Mol Biol; 1997 Sep; 272(1):1-8. PubMed ID: 9299332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial transcription factor Mtf1 traps the unwound non-template strand to facilitate open complex formation.
    Paratkar S; Patel SS
    J Biol Chem; 2010 Feb; 285(6):3949-3956. PubMed ID: 20008320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recognition of promoter DNA by subdomain 4.2 of Escherichia coli sigma 70: a knowledge based model of -35 hexamer interaction with 4.2 helix-turn-helix motif.
    Reddy BV; Gopal V; Chatterji D
    J Biomol Struct Dyn; 1997 Feb; 14(4):407-19. PubMed ID: 9172641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.