BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 11567091)

  • 1. An ancestral nuclear protein assembly: crystal structure of the Methanopyrus kandleri histone.
    Fahrner RL; Cascio D; Lake JA; Slesarev A
    Protein Sci; 2001 Oct; 10(10):2002-7. PubMed ID: 11567091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetry in the burial of hydrophobic residues along the histone chains of eukarya, archaea and a transcription factor.
    Silverman BD
    BMC Struct Biol; 2005 Oct; 5():20. PubMed ID: 16242031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleosome-like complex of the histone from the hyperthermophile Methanopyrus kandleri (MkaH) with linear DNA.
    Pavlov NA; Cherny DI; Jovin TM; Slesarev AI
    J Biomol Struct Dyn; 2002 Oct; 20(2):207-14. PubMed ID: 12354072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for an early prokaryotic origin of histones H2A and H4 prior to the emergence of eukaryotes.
    Slesarev AI; Belova GI; Kozyavkin SA; Lake JA
    Nucleic Acids Res; 1998 Jan; 26(2):427-30. PubMed ID: 9421495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of archaemetzincin AmzA from Methanopyrus kandleri at 1.5 A resolution.
    Waltersperger S; Widmer C; Wang M; Baumann U
    Proteins; 2010 Sep; 78(12):2720-3. PubMed ID: 20597090
    [No Abstract]   [Full Text] [Related]  

  • 6. Histones and nucleosomes in Archaea and Eukarya: a comparative analysis.
    Pereira SL; Reeve JN
    Extremophiles; 1998 Aug; 2(3):141-8. PubMed ID: 9783158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and specificity of FEN-1 from Methanopyrus kandleri.
    Shah S; Dunten P; Stiteler A; Park CK; Horton NC
    Proteins; 2015 Jan; 83(1):188-94. PubMed ID: 25354467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NMR structure of HMfB from the hyperthermophile, Methanothermus fervidus, confirms that this archaeal protein is a histone.
    Starich MR; Sandman K; Reeve JN; Summers MF
    J Mol Biol; 1996 Jan; 255(1):187-203. PubMed ID: 8568866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In silico functional characterization of a double histone fold domain from the Heliothis zea virus 1.
    Greco C; Fantucci P; De Gioia L
    BMC Bioinformatics; 2005 Dec; 6 Suppl 4(Suppl 4):S15. PubMed ID: 16351741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The crystal structure of AF1521 a protein from Archaeoglobus fulgidus with homology to the non-histone domain of macroH2A.
    Allen MD; Buckle AM; Cordell SC; Löwe J; Bycroft M
    J Mol Biol; 2003 Jul; 330(3):503-11. PubMed ID: 12842467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DAXX envelops a histone H3.3-H4 dimer for H3.3-specific recognition.
    Elsässer SJ; Huang H; Lewis PW; Chin JW; Allis CD; Patel DJ
    Nature; 2012 Nov; 491(7425):560-5. PubMed ID: 23075851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structures of recombinant histones HMfA and HMfB from the hyperthermophilic archaeon Methanothermus fervidus.
    Decanniere K; Babu AM; Sandman K; Reeve JN; Heinemann U
    J Mol Biol; 2000 Oct; 303(1):35-47. PubMed ID: 11021968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive structural analysis of mutant nucleosomes containing lysine to glutamine (KQ) substitutions in the H3 and H4 histone-fold domains.
    Iwasaki W; Tachiwana H; Kawaguchi K; Shibata T; Kagawa W; Kurumizaka H
    Biochemistry; 2011 Sep; 50(36):7822-32. PubMed ID: 21812398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conserved eukaryotic histone-fold residues substituted into an archaeal histone increase DNA affinity but reduce complex flexibility.
    Soares DJ; Marc F; Reeve JN
    J Bacteriol; 2003 Jun; 185(11):3453-7. PubMed ID: 12754245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into the architecture of the replicative helicase from the structure of an archaeal MCM homolog.
    Bae B; Chen YH; Costa A; Onesti S; Brunzelle JS; Lin Y; Cann IK; Nair SK
    Structure; 2009 Feb; 17(2):211-22. PubMed ID: 19217392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The phylogeny of Methanopyrus kandleri.
    Rivera MC; Lake JA
    Int J Syst Bacteriol; 1996 Jan; 46(1):348-51. PubMed ID: 8573519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Archaeal histone selection of nucleosome positioning sequences and the procaryotic origin of histone-dependent genome evolution.
    Bailey KA; Pereira SL; Widom J; Reeve JN
    J Mol Biol; 2000 Oct; 303(1):25-34. PubMed ID: 11021967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoarchaeal origin of histone H3?
    Friedrich-Jahn U; Aigner J; Längst G; Reeve JN; Huber H
    J Bacteriol; 2009 Feb; 191(3):1092-6. PubMed ID: 19047349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis for the recognition of histone H4 by the histone-chaperone RbAp46.
    Murzina NV; Pei XY; Zhang W; Sparkes M; Vicente-Garcia J; Pratap JV; McLaughlin SH; Ben-Shahar TR; Verreault A; Luisi BF; Laue ED
    Structure; 2008 Jul; 16(7):1077-85. PubMed ID: 18571423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structures of human nucleosomes containing major histone H3 variants.
    Tachiwana H; Osakabe A; Shiga T; Miya Y; Kimura H; Kagawa W; Kurumizaka H
    Acta Crystallogr D Biol Crystallogr; 2011 Jun; 67(Pt 6):578-83. PubMed ID: 21636898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.