These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 11567153)

  • 1. Phasing from an envelope.
    Hao Q
    Acta Crystallogr D Biol Crystallogr; 2001 Oct; 57(Pt 10):1410-4. PubMed ID: 11567153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implementation of cluster analysis for ab initio phasing using the molecular envelope from solution X-ray scattering.
    Ockwell DM; Hough MA; Grossmann JG; Hasnain SS; Hao Q
    Acta Crystallogr D Biol Crystallogr; 2000 Aug; 56(Pt 8):1002-6. PubMed ID: 10944337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ab initio phasing using molecular envelope from solution X-ray scattering.
    Hao Q; Dodd FE; Grossmann JG; Hasnain SS
    Acta Crystallogr D Biol Crystallogr; 1999 Jan; 55(Pt 1):243-6. PubMed ID: 10089416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining solution wide-angle X-ray scattering and crystallography: determination of molecular envelope and heavy-atom sites.
    Hong X; Hao Q
    J Appl Crystallogr; 2009 Apr; 42(Pt 2):259-264. PubMed ID: 19529837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystallographic phasing with NMR models: an envelope approach.
    Zhang W; Zhang T; Zhang H; Hao Q
    Acta Crystallogr D Biol Crystallogr; 2014 Jul; 70(Pt 7):1977-82. PubMed ID: 25004974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macromolecular envelope determination and envelope-based phasing.
    Hao Q
    Acta Crystallogr D Biol Crystallogr; 2006 Aug; 62(Pt 8):909-14. PubMed ID: 16855308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. X-ray structure of a blue copper nitrite reductase at high pH and in copper-free form at 1.9 A resolution.
    Ellis MJ; Dodd FE; Strange RW; Prudêncio M; Sawers G; Eady RR; Hasnain SS
    Acta Crystallogr D Biol Crystallogr; 2001 Aug; 57(Pt 8):1110-8. PubMed ID: 11468394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using cryo-electron microscopy maps for X-ray structure determination.
    Zeng L; Ding W; Hao Q
    IUCrJ; 2018 Jul; 5(Pt 4):382-389. PubMed ID: 30002839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and kinetic evidence for an ordered mechanism of copper nitrite reductase.
    Strange RW; Murphy LM; Dodd FE; Abraham ZH; Eady RR; Smith BE; Hasnain SS
    J Mol Biol; 1999 Apr; 287(5):1001-9. PubMed ID: 10222206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-resolution molecular replacement using a six-dimensional search.
    Liu Q; Weaver AJ; Xiang T; Thiel DJ; Hao Q
    Acta Crystallogr D Biol Crystallogr; 2003 Jun; 59(Pt 6):1016-9. PubMed ID: 12777764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of superoxide dismutase from Pyrobaculum aerophilum presents a challenging case in molecular replacement with multiple molecules, pseudo-symmetry and twinning.
    Lee S; Sawaya MR; Eisenberg D
    Acta Crystallogr D Biol Crystallogr; 2003 Dec; 59(Pt 12):2191-9. PubMed ID: 14646077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The phase problem for two-dimensional crystals. I. Theory.
    Arnal RD; Millane RP
    Acta Crystallogr A Found Adv; 2017 Nov; 73(Pt 6):438-448. PubMed ID: 29072197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. X-ray structure of a blue-copper nitrite reductase in two crystal forms. The nature of the copper sites, mode of substrate binding and recognition by redox partner.
    Dodd FE; Van Beeumen J; Eady RR; Hasnain SS
    J Mol Biol; 1998 Sep; 282(2):369-82. PubMed ID: 9735294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase retrieval in protein crystallography.
    Liu ZC; Xu R; Dong YH
    Acta Crystallogr A; 2012 Mar; 68(Pt 2):256-65. PubMed ID: 22338660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uniqueness of the macromolecular crystallographic phase problem.
    Millane RP; Arnal RD
    Acta Crystallogr A Found Adv; 2015 Nov; 71(Pt 6):592-8. PubMed ID: 26522408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accelerating ab initio phasing with de novo models.
    Shrestha R; Berenger F; Zhang KY
    Acta Crystallogr D Biol Crystallogr; 2011 Sep; 67(Pt 9):804-12. PubMed ID: 21904033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fragmentation and reassembly method for ab initio phasing.
    Shrestha R; Zhang KY
    Acta Crystallogr D Biol Crystallogr; 2015 Feb; 71(Pt 2):304-12. PubMed ID: 25664740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Challenges of sulfur SAD phasing as a routine method in macromolecular crystallography.
    Doutch J; Hough MA; Hasnain SS; Strange RW
    J Synchrotron Radiat; 2012 Jan; 19(Pt 1):19-29. PubMed ID: 22186640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure determination of Nudaurelia capensis omega virus.
    Munshi S; Liljas L; Johnson JE
    Acta Crystallogr D Biol Crystallogr; 1998 Nov; 54(Pt 6 Pt 2):1295-305. PubMed ID: 10089506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iterative projection algorithms for ab initio phasing in virus crystallography.
    Lo VL; Kingston RL; Millane RP
    J Struct Biol; 2016 Dec; 196(3):407-413. PubMed ID: 27623229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.