BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 11567611)

  • 1. Targeted attenuation of electrical activity in Drosophila using a genetically modified K(+) channel.
    White BH; Osterwalder TP; Yoon KS; Joiner WJ; Whim MD; Kaczmarek LK; Keshishian H
    Neuron; 2001 Sep; 31(5):699-711. PubMed ID: 11567611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane electrical excitability is necessary for the free-running larval Drosophila circadian clock.
    Nitabach MN; Sheeba V; Vera DA; Blau J; Holmes TC
    J Neurobiol; 2005 Jan; 62(1):1-13. PubMed ID: 15389695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The contribution of Shaker K+ channels to the information capacity of Drosophila photoreceptors.
    Niven JE; Vähäsöyrinki M; Kauranen M; Hardie RC; Juusola M; Weckström M
    Nature; 2003 Feb; 421(6923):630-4. PubMed ID: 12571596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrical silencing of Drosophila pacemaker neurons stops the free-running circadian clock.
    Nitabach MN; Blau J; Holmes TC
    Cell; 2002 May; 109(4):485-95. PubMed ID: 12086605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lethal comatose mutation in Drosophila reveals possible role for NSF in neurogenesis.
    Sanyal S; Krishnan KS
    Neuroreport; 2001 May; 12(7):1363-6. PubMed ID: 11388412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Divalent cation modulation of a-type potassium channels in acutely dissociated central neurons from wide-type and mutant Drosophila.
    Xu TX; Gong N; Xu TL
    J Neurogenet; 2005; 19(2):87-107. PubMed ID: 16024441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of the frequency response of Shaker potassium channels by the quiver peptide suggesting a novel extracellular interaction mechanism.
    Wang JW; Wu CF
    J Neurogenet; 2010 Jul; 24(2):67-74. PubMed ID: 20429677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. G-protein gamma subunit 1 is required for sugar reception in Drosophila.
    Ishimoto H; Takahashi K; Ueda R; Tanimura T
    EMBO J; 2005 Sep; 24(18):3259-65. PubMed ID: 16121192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shaker K(+)-channels are predicted to reduce the metabolic cost of neural information in Drosophila photoreceptors.
    Niven JE; Vähäsöyrinki M; Juusola M
    Proc Biol Sci; 2003 Aug; 270 Suppl 1(Suppl 1):S58-61. PubMed ID: 12952637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissection of synaptic excitability phenotypes by using a dominant-negative Shaker K+ channel subunit.
    Mosca TJ; Carrillo RA; White BH; Keshishian H
    Proc Natl Acad Sci U S A; 2005 Mar; 102(9):3477-82. PubMed ID: 15728380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential contributions of Shaker and Shab K+ currents to neuronal firing patterns in Drosophila.
    Peng IF; Wu CF
    J Neurophysiol; 2007 Jan; 97(1):780-94. PubMed ID: 17079336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A toolbox for light control of Drosophila behaviors through Channelrhodopsin 2-mediated photoactivation of targeted neurons.
    Zhang W; Ge W; Wang Z
    Eur J Neurosci; 2007 Nov; 26(9):2405-16. PubMed ID: 17970730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sub-cellular Ca2+ dynamics affected by voltage- and Ca2+-gated K+ channels: Regulation of the soma-growth cone disparity and the quiescent state in Drosophila neurons.
    Berke BA; Lee J; Peng IF; Wu CF
    Neuroscience; 2006 Oct; 142(3):629-44. PubMed ID: 16919393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic analysis of an overlapping functional requirement for L1- and NCAM-type proteins during sensory axon guidance in Drosophila.
    Kristiansen LV; Velasquez E; Romani S; Baars S; Berezin V; Bock E; Hortsch M; Garcia-Alonso L
    Mol Cell Neurosci; 2005 Jan; 28(1):141-52. PubMed ID: 15607949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. painless, a Drosophila gene essential for nociception.
    Tracey WD; Wilson RI; Laurent G; Benzer S
    Cell; 2003 Apr; 113(2):261-73. PubMed ID: 12705873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Auxiliary Hyperkinetic beta subunit of K+ channels: regulation of firing properties and K+ currents in Drosophila neurons.
    Yao WD; Wu CF
    J Neurophysiol; 1999 May; 81(5):2472-84. PubMed ID: 10322082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial and temporal control of gene expression in Drosophila using the inducible GeneSwitch GAL4 system. I. Screen for larval nervous system drivers.
    Nicholson L; Singh GK; Osterwalder T; Roman GW; Davis RL; Keshishian H
    Genetics; 2008 Jan; 178(1):215-34. PubMed ID: 18202369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature-dependent developmental plasticity of Drosophila neurons: cell-autonomous roles of membrane excitability, Ca2+ influx, and cAMP signaling.
    Peng IF; Berke BA; Zhu Y; Lee WH; Chen W; Wu CF
    J Neurosci; 2007 Nov; 27(46):12611-22. PubMed ID: 18003840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Behavioral and electrophysiological analysis of Ca-activated K-channel transgenes in Drosophila.
    Atkinson NS; Brenner R; Bohm RA; Yu JY; Wilbur JL
    Ann N Y Acad Sci; 1998 Nov; 860():296-305. PubMed ID: 9928320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct functions of neuronal synaptobrevin in developing and mature fly photoreceptors.
    Rister J; Heisenberg M
    J Neurobiol; 2006 Oct; 66(12):1271-84. PubMed ID: 16967508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.