BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 11567889)

  • 1. Biological infrared imaging and sensing.
    Campbell AL; Naik RR; Sowards L; Stone MO
    Micron; 2002; 33(2):211-25. PubMed ID: 11567889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ganglion-specific splicing of TRPV1 underlies infrared sensation in vampire bats.
    Gracheva EO; Cordero-Morales JF; González-Carcacía JA; Ingolia NT; Manno C; Aranguren CI; Weissman JS; Julius D
    Nature; 2011 Aug; 476(7358):88-91. PubMed ID: 21814281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A suspected infrared-recipient nucleus in the brainstem of the vampire bat, Desmodus rotundus.
    Kishida R; Goris RC; Terashima S; Dubbeldam JL
    Brain Res; 1984 Nov; 322(2):351-5. PubMed ID: 6509324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal modeling of snake infrared reception: evidence for limited detection range.
    Jones BS; Lynn WF; Stone MO
    J Theor Biol; 2001 Mar; 209(2):201-11. PubMed ID: 11401462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The development of a μ-biomimetic uncooled IR-Sensor inspired by the infrared receptors of Melanophila acuminata.
    Siebke G; Holik P; Schmitz S; Tätzner S; Thiesler J; Steltenkamp S
    Bioinspir Biomim; 2015 Mar; 10(2):026007. PubMed ID: 25822807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bimodal innervation of the infrared organ of Merimna atrata (Coleoptera, Buprestidae) by thermo- and mechanosensory units.
    Schneider ES; Schmitz H
    Arthropod Struct Dev; 2013 Mar; 42(2):135-42. PubMed ID: 23178564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultramicrostructure and microthermomechanics of biological IR detectors: materials properties from a biomimetic perspective.
    Hazel J; Fuchigami N; Gorbunov V; Schmitz H; Stone M; Tsukruk VV
    Biomacromolecules; 2001; 2(1):304-12. PubMed ID: 11749187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the transduction mechanism of infrared detection in Melanophila acuminata: photo-thermal-mechanical hypothesis.
    Hammer DX; Davé D; Milner TE; Choi B; Rylander HG; Welch AJ
    Comp Biochem Physiol A Mol Integr Physiol; 2002 Jun; 132(2):381-92. PubMed ID: 12020654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface ultrastructure of pit organ, spectacle, and non pit organ epidermis of infrared imaging boid snakes: A scanning probe and scanning electron microscopy study.
    Campbell AL; Bunning TJ; Stone MO; Church D; Grace MS
    J Struct Biol; 1999 Jun; 126(2):105-20. PubMed ID: 10388622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Infrared snake eyes: TRPA1 and the thermal sensitivity of the snake pit organ.
    Panzano VC; Kang K; Garrity PA
    Sci Signal; 2010 Jun; 3(127):pe22. PubMed ID: 20571127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic photomechanic infrared receptors in a pyrophilous flat bug.
    Schmitz A; Gebhardt M; Schmitz H
    Naturwissenschaften; 2008 May; 95(5):455-60. PubMed ID: 18246323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Central response to infra-red stimulation of the pit receptors in a crotaline snake, Trimeresurus flavoviridis.
    Goris RC; Terashima SI
    J Exp Biol; 1973 Feb; 58(1):59-76. PubMed ID: 4350276
    [No Abstract]   [Full Text] [Related]  

  • 13. A new type of insect infrared organ of low thermal mass.
    Schmitz H; Schmitz A; Trenner S; Bleckmann H
    Naturwissenschaften; 2002 May; 89(5):226-9. PubMed ID: 12135088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Static response of infrared neurons of crotaline snakes--normal distribution of interspike intervals.
    Terashima S; Goris RC
    Cell Mol Neurobiol; 1983 Mar; 3(1):27-37. PubMed ID: 6883421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrastructure of the crotaline snake infrared pit receptors: SEM confirmation of TEM findings.
    Amemiya F; Ushiki T; Goris RC; Atobe Y; Kusunoki T
    Anat Rec; 1996 Sep; 246(1):135-46. PubMed ID: 8876832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new type of infrared organ in the Australian "fire-beetle" Merimna atrata (Coleoptera: Buprestidae).
    Schmitz H; Schmitz A; Bleckmann H
    Naturwissenschaften; 2000 Dec; 87(12):542-5. PubMed ID: 11198195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature-induced changes in the number of vesicles in the free nerve endings of temperature neurons of the snake.
    Terashima S; Jiang PJ; Mizuhira V; Hasegawa H; Notoya M
    Somatosens Mot Res; 1995; 12(2):143-50. PubMed ID: 7502604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophysiological characterization of the multipolar thermoreceptors in the "fire-beetle" Merimna atrata and comparison with the infrared sensilla of Melanophila acuminata (both Coleoptera, Buprestidae).
    Schmitz H; Trenner S
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Sep; 189(9):715-22. PubMed ID: 12920547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An investigation of the effects of ruthenium red, nitric oxide and endothelin-1 on infrared receptor activity in a crotaline snake.
    Moon C
    Neuroscience; 2004; 124(4):913-8. PubMed ID: 15026131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model for μ-biomimetic thermal infrared sensors based on the infrared receptors of Melanophila acuminata.
    Siebke G; Holik P; Schmitz S; Schmitz H; Lacher M; Steltenkamp S
    Bioinspir Biomim; 2014 Sep; 9(3):036012. PubMed ID: 24762777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.