These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 11568434)

  • 41. Ribosome dynamics during decoding.
    Rodnina MV; Fischer N; Maracci C; Stark H
    Philos Trans R Soc Lond B Biol Sci; 2017 Mar; 372(1716):. PubMed ID: 28138068
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Crystal structures of the human elongation factor eEFSec suggest a non-canonical mechanism for selenocysteine incorporation.
    Dobosz-Bartoszek M; Pinkerton MH; Otwinowski Z; Chakravarthy S; Söll D; Copeland PR; Simonović M
    Nat Commun; 2016 Oct; 7():12941. PubMed ID: 27708257
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Barriers to heterologous expression of a selenoprotein gene in bacteria.
    Tormay P; Böck A
    J Bacteriol; 1997 Feb; 179(3):576-82. PubMed ID: 9006007
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Selenoprotein synthesis: an expansion of the genetic code.
    Böck A; Forchhammer K; Heider J; Baron C
    Trends Biochem Sci; 1991 Dec; 16(12):463-7. PubMed ID: 1838215
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Antideterminants present in minihelix(Sec) hinder its recognition by prokaryotic elongation factor Tu.
    Rudinger J; Hillenbrandt R; Sprinzl M; Giegé R
    EMBO J; 1996 Feb; 15(3):650-7. PubMed ID: 8599948
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Crystallization and preliminary X-ray analysis of the mRNA-binding domain of elongation factor SelB in complex with RNA.
    Rasubala L; Fourmy D; Ose T; Kohda D; Maenaka K; Yoshizawa S
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2005 Mar; 61(Pt 3):296-8. PubMed ID: 16511023
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Update on selenoprotein biosynthesis.
    Bulteau AL; Chavatte L
    Antioxid Redox Signal; 2015 Oct; 23(10):775-94. PubMed ID: 26154496
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nematode selenoproteome: the use of the selenocysteine insertion system to decode one codon in an animal genome?
    Taskov K; Chapple C; Kryukov GV; Castellano S; Lobanov AV; Korotkov KV; Guigó R; Gladyshev VN
    Nucleic Acids Res; 2005; 33(7):2227-38. PubMed ID: 15843685
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biological implications of selenium and its role in trypanosomiasis treatment.
    da Silva MT; Silva-Jardim I; Thiemann OH
    Curr Med Chem; 2014; 21(15):1772-80. PubMed ID: 24251578
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structural model for the selenocysteine-specific elongation factor SelB.
    Hilgenfeld R; Böck A; Wilting R
    Biochimie; 1996; 78(11-12):971-8. PubMed ID: 9150874
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Interaction of the Escherichia coli fdhF mRNA hairpin promoting selenocysteine incorporation with the ribosome.
    Hüttenhofer A; Heider J; Böck A
    Nucleic Acids Res; 1996 Oct; 24(20):3903-10. PubMed ID: 8918790
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Disruption and complementation of the selenocysteine biosynthesis pathway reveals a hierarchy of selenoprotein gene expression in the archaeon Methanococcus maripaludis.
    Stock T; Selzer M; Connery S; Seyhan D; Resch A; Rother M
    Mol Microbiol; 2011 Nov; 82(3):734-47. PubMed ID: 21992107
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The function of SECIS RNA in translational control of gene expression in Escherichia coli.
    Thanbichler M; Böck A
    EMBO J; 2002 Dec; 21(24):6925-34. PubMed ID: 12486013
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evolutionary relationship between translation initiation factor eIF-2gamma and selenocysteine-specific elongation factor SELB: change of function in translation factors.
    Keeling PJ; Fast NM; McFadden GI
    J Mol Evol; 1998 Dec; 47(6):649-55. PubMed ID: 9847405
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The selenium to selenoprotein pathway in eukaryotes: more molecular partners than anticipated.
    Allmang C; Wurth L; Krol A
    Biochim Biophys Acta; 2009 Nov; 1790(11):1415-23. PubMed ID: 19285539
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Expression and operon structure of the sel genes of Escherichia coli and identification of a third selenium-containing formate dehydrogenase isoenzyme.
    Sawers G; Heider J; Zehelein E; Böck A
    J Bacteriol; 1991 Aug; 173(16):4983-93. PubMed ID: 1650339
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Solution structure of mRNA hairpins promoting selenocysteine incorporation in Escherichia coli and their base-specific interaction with special elongation factor SELB.
    Hüttenhofer A; Westhof E; Böck A
    RNA; 1996 Apr; 2(4):354-66. PubMed ID: 8634916
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A selDABC cluster for selenocysteine incorporation in Eubacterium acidaminophilum.
    Gursinsky T; Jäger J; Andreesen JR; Söhling B
    Arch Microbiol; 2000 Sep; 174(3):200-12. PubMed ID: 11041351
    [TBL] [Abstract][Full Text] [Related]  

  • 59. RNA-dependent conversion of phosphoserine forms selenocysteine in eukaryotes and archaea.
    Yuan J; Palioura S; Salazar JC; Su D; O'Donoghue P; Hohn MJ; Cardoso AM; Whitman WB; Söll D
    Proc Natl Acad Sci U S A; 2006 Dec; 103(50):18923-7. PubMed ID: 17142313
    [TBL] [Abstract][Full Text] [Related]  

  • 60. In vitro selection of RNA aptamers that bind special elongation factor SelB, a protein with multiple RNA-binding sites, reveals one major interaction domain at the carboxyl terminus.
    Klug SJ; Hüttenhofer A; Famulok M
    RNA; 1999 Sep; 5(9):1180-90. PubMed ID: 10496219
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.