BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 11568443)

  • 41. A novel RNA binding protein, SBP2, is required for the translation of mammalian selenoprotein mRNAs.
    Copeland PR; Fletcher JE; Carlson BA; Hatfield DL; Driscoll DM
    EMBO J; 2000 Jan; 19(2):306-14. PubMed ID: 10637234
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Interplay between termination and translation machinery in eukaryotic selenoprotein synthesis.
    Grundner-Culemann E; Martin GW; Tujebajeva R; Harney JW; Berry MJ
    J Mol Biol; 2001 Jul; 310(4):699-707. PubMed ID: 11453681
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A pseudo-SECIS element in Methanococcus voltae documents evolution of a selenoprotein into a sulphur-containing homologue.
    Böck A; Rother M
    Arch Microbiol; 2005 Feb; 183(2):148-50. PubMed ID: 15611862
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Polysome distribution of phospholipid hydroperoxide glutathione peroxidase mRNA: evidence for a block in elongation at the UGA/selenocysteine codon.
    Fletcher JE; Copeland PR; Driscoll DM
    RNA; 2000 Nov; 6(11):1573-84. PubMed ID: 11105757
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nematode selenoproteome: the use of the selenocysteine insertion system to decode one codon in an animal genome?
    Taskov K; Chapple C; Kryukov GV; Castellano S; Lobanov AV; Korotkov KV; Guigó R; Gladyshev VN
    Nucleic Acids Res; 2005; 33(7):2227-38. PubMed ID: 15843685
    [TBL] [Abstract][Full Text] [Related]  

  • 46. New mammalian selenocysteine-containing proteins identified with an algorithm that searches for selenocysteine insertion sequence elements.
    Kryukov GV; Kryukov VM; Gladyshev VN
    J Biol Chem; 1999 Nov; 274(48):33888-97. PubMed ID: 10567350
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Domain structure of the prokaryotic selenocysteine-specific elongation factor SelB.
    Kromayer M; Wilting R; Tormay P; Böck A
    J Mol Biol; 1996 Oct; 262(4):413-20. PubMed ID: 8893853
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Asgard archaeal selenoproteome reveals a roadmap for the archaea-to-eukaryote transition of selenocysteine incorporation machinery.
    Huang B; Xiao Y; Zhang Y
    ISME J; 2024 Jun; ():. PubMed ID: 38896033
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mammalian selenoprotein in which selenocysteine (Sec) incorporation is supported by a new form of Sec insertion sequence element.
    Korotkov KV; Novoselov SV; Hatfield DL; Gladyshev VN
    Mol Cell Biol; 2002 Mar; 22(5):1402-11. PubMed ID: 11839807
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Analysis of eukaryotic mRNA structures directing cotranslational incorporation of selenocysteine.
    Kollmus H; Flohé L; McCarthy JE
    Nucleic Acids Res; 1996 Apr; 24(7):1195-201. PubMed ID: 8614619
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An ancient family of SelB elongation factor-like proteins with a broad but disjunct distribution across archaea.
    Atkinson GC; Hauryliuk V; Tenson T
    BMC Evol Biol; 2011 Jan; 11():22. PubMed ID: 21255425
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In silico identification of novel selenoproteins in the Drosophila melanogaster genome.
    Castellano S; Morozova N; Morey M; Berry MJ; Serras F; Corominas M; Guigó R
    EMBO Rep; 2001 Aug; 2(8):697-702. PubMed ID: 11493597
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cloning and functional characterization of human selenophosphate synthetase, an essential component of selenoprotein synthesis.
    Low SC; Harney JW; Berry MJ
    J Biol Chem; 1995 Sep; 270(37):21659-64. PubMed ID: 7665581
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Eukaryotic selenocysteine incorporation follows a nonprocessive mechanism that competes with translational termination.
    Nasim MT; Jaenecke S; Belduz A; Kollmus H; Flohé L; McCarthy JE
    J Biol Chem; 2000 May; 275(20):14846-52. PubMed ID: 10809727
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Conserved features of selenocysteine insertion sequence (SECIS) elements in selenoprotein W cDNAs from five species.
    Gu QP; Beilstein MA; Vendeland SC; Lugade A; Ream W; Whanger PD
    Gene; 1997 Jul; 193(2):187-96. PubMed ID: 9256076
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Assessment of production conditions for efficient use of Escherichia coli in high-yield heterologous recombinant selenoprotein synthesis.
    Rengby O; Johansson L; Carlson LA; Serini E; Vlamis-Gardikas A; Kårsnäs P; Arnér ES
    Appl Environ Microbiol; 2004 Sep; 70(9):5159-67. PubMed ID: 15345395
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Control of ribosomal protein L1 synthesis in mesophilic and thermophilic archaea.
    Kraft A; Lutz C; Lingenhel A; Gröbner P; Piendl W
    Genetics; 1999 Aug; 152(4):1363-72. PubMed ID: 10430567
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A sequence in the Escherichia coli fdhF "selenocysteine insertion Sequence" (SECIS) operates in the absence of selenium.
    Liu Z; Reches M; Engelberg-Kulka H
    J Mol Biol; 1999 Dec; 294(5):1073-86. PubMed ID: 10600367
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Methods to Biosynthesize Mammalian Selenocysteine-Containing Proteins in vitro].
    Varlamova EG; Novoselov SV
    Mol Biol (Mosk); 2016; 50(1):44-50. PubMed ID: 27028810
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Distinctive features in the SelB family of elongation factors for selenoprotein synthesis. A glimpse of an evolutionary complexified translation apparatus.
    Fagegaltier D; Carbon P; Krol A
    Biofactors; 2001; 14(1-4):5-10. PubMed ID: 11568434
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.