These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 11568964)
1. Leucine transport in membrane vesicles from Chironomus riparius larvae displays a mélange of crown-group features. Parenti P; Forcella M; Pugliese A; Giacchini R; Rossaro B; Hanozet GM Arch Insect Biochem Physiol; 2001 Oct; 48(2):51-62. PubMed ID: 11568964 [TBL] [Abstract][Full Text] [Related]
2. Changes in leucine transport activity in Chironomus riparius larvae after short-term exposure to potassium dichromate and fenitrothion. Forcella M; Berra E; Giacchini R; Hanozet GM; Parenti P Arch Insect Biochem Physiol; 2004 Feb; 55(2):90-101. PubMed ID: 14745826 [TBL] [Abstract][Full Text] [Related]
3. Leucine transport in brush border membrane vesicles from freshwater insect larvae. Forcella M; Berra E; Giacchini R; Parenti P Arch Insect Biochem Physiol; 2006 Nov; 63(3):110-22. PubMed ID: 17048243 [TBL] [Abstract][Full Text] [Related]
4. Placental membrane transport: leucine transport across the brush border and basal cell membrane surfaces. Anand RJ; Kanwar U; Sanyal SN Res Exp Med (Berl); 1996; 196(1):29-43. PubMed ID: 8833485 [TBL] [Abstract][Full Text] [Related]
5. Postnatal amino acid uptake by the rat small intestine. Changes in membrane transport systems for amino acids associated with maturation of jejunal morphology. Murphy S; Daniels VG J Dev Physiol; 1979 Apr; 1(2):111-26. PubMed ID: 121999 [TBL] [Abstract][Full Text] [Related]
6. Isolation and function of the amino acid transporter PAT1 (slc36a1) from rabbit and discrimination between transport via PAT1 and system IMINO in renal brush-border membrane vesicles. Miyauchi S; Abbot EL; Zhuang L; Subramanian R; Ganapathy V; Thwaites DT Mol Membr Biol; 2005; 22(6):549-59. PubMed ID: 16373326 [TBL] [Abstract][Full Text] [Related]
7. Sodium ion-dependent amino acid transport in membrane vesicles of Bacillus stearothermophilus. Heyne RI; de Vrij W; Crielaard W; Konings WN J Bacteriol; 1991 Jan; 173(2):791-800. PubMed ID: 1670936 [TBL] [Abstract][Full Text] [Related]
8. Membrane transport by guinea pig peritoneal exudate leukocytes: effect of phagocytosis on hexose and amino acid transport. Straus DC; Imhoff JG; Bonventre PF J Cell Physiol; 1977 Oct; 93(1):105-16. PubMed ID: 561790 [TBL] [Abstract][Full Text] [Related]
9. Transport of amino acids in intact 3T3 and SV3T3 cells. Binding activity for leucine in membrane preparations of ehrlich ascites tumor cells. Cecchini G; Lee M; Oxender DL J Supramol Struct; 1976; 4(4):441-7. PubMed ID: 180354 [TBL] [Abstract][Full Text] [Related]
10. L-lysine uptake in giant vesicles from cardiac ventricular sarcolemma: two components of cationic amino acid transport. Lu X; Zheng R; Gonzalez J; Gaspers L; Kuzhikandathil E; Peluffo RD Biosci Rep; 2009 Aug; 29(4):271-81. PubMed ID: 19032145 [TBL] [Abstract][Full Text] [Related]
11. Antioxidant defenses preserve membrane transport activity in Chironomus riparius larvae exposed to anoxia. Forcella M; Berra E; Giacchini R; Parenti P Arch Insect Biochem Physiol; 2007 Aug; 65(4):181-94. PubMed ID: 17630655 [TBL] [Abstract][Full Text] [Related]
12. Membrane transport function in primary cultures of human proximal tubular cells. Lash LH; Putt DA; Cai H Toxicology; 2006 Dec; 228(2-3):200-18. PubMed ID: 16997449 [TBL] [Abstract][Full Text] [Related]
13. Characterization of transport systems for cysteine, lysine, alanine, and leucine in wool follicles of sheep. Thomas N; Tivey DR; Penno NM; Nattrass G; Hynd PI J Anim Sci; 2007 Sep; 85(9):2205-13. PubMed ID: 17504964 [TBL] [Abstract][Full Text] [Related]
14. Investigating a potential mechanism of Cd resistance in Chironomus riparius larvae using kinetic analysis of calcium and cadmium uptake. Gillis PL; Wood CM Aquat Toxicol; 2008 Sep; 89(3):180-7. PubMed ID: 18676035 [TBL] [Abstract][Full Text] [Related]
15. Leucine transport by the larval midgut of the parasitoid Aphidius ervi (Hymenoptera). Fiandra L; Caccia S; Giordana B; Casartelli M J Insect Physiol; 2010 Feb; 56(2):165-9. PubMed ID: 19799906 [TBL] [Abstract][Full Text] [Related]
18. Na+ and pH dependence of proline and beta-alanine absorption in rat small intestine. Iñigo C; Barber A; Lostao MP Acta Physiol (Oxf); 2006 Apr; 186(4):271-8. PubMed ID: 16634782 [TBL] [Abstract][Full Text] [Related]
19. Na+-dependent transport of large neutral amino acids occurs at the abluminal membrane of the blood-brain barrier. O'Kane RL; Hawkins RA Am J Physiol Endocrinol Metab; 2003 Dec; 285(6):E1167-73. PubMed ID: 12933350 [TBL] [Abstract][Full Text] [Related]
20. Regulation of L-leucine transport in rat kidney by dexamethasone and triiodothyronine. Schwertfeger M; Pissowotzki K; Fleck Ch; Taylor PM Amino Acids; 2003 Jul; 25(1):75-83. PubMed ID: 12836062 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]