These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 11569635)
21. Development of a quasi-monoenergetic neutron field using the 7Li(p,n)7Be reaction in the energy range from 250 to 390 MeV at RCNP. Taniguchi S; Nakao N; Nakamura T; Yashima H; Iwamoto Y; Satoh D; Nakane Y; Nakashima H; Itoga T; Tamii A; Hatanaka K Radiat Prot Dosimetry; 2007; 126(1-4):23-7. PubMed ID: 17502318 [TBL] [Abstract][Full Text] [Related]
22. Measurement of the fluence response of the GSI neutron ball dosemeter in the energy range from thermal to 19 MeV. Fehrenbacher G; Kozlova E; Gutermuth F; Radon T; Schütz R; Nolte R; Böttger R Radiat Prot Dosimetry; 2007; 126(1-4):546-8. PubMed ID: 17561518 [TBL] [Abstract][Full Text] [Related]
23. Photonuclear dose calculations for high-energy photon beams from Siemens and Varian linacs. Chibani O; Ma CM Med Phys; 2003 Aug; 30(8):1990-2000. PubMed ID: 12945965 [TBL] [Abstract][Full Text] [Related]
25. Shielding design calculations for beam dump facility of KOMAC. Cho YS; Lee YO; Chang J Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):259-63. PubMed ID: 16604640 [TBL] [Abstract][Full Text] [Related]
26. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy. Sakurai Y; Tanaka H; Kondo N; Kinashi Y; Suzuki M; Masunaga S; Ono K; Maruhashi A Med Phys; 2015 Nov; 42(11):6651-7. PubMed ID: 26520755 [TBL] [Abstract][Full Text] [Related]
27. Thick beryllium target as an epithermal neutron source for neutron capture therapy. Wang CK; Moore BR Med Phys; 1994 Oct; 21(10):1633-8. PubMed ID: 7869996 [TBL] [Abstract][Full Text] [Related]
28. Measurement of neutron leakage spectra at a 500-MeV proton accelerator. Moritz LE Health Phys; 1989 Mar; 56(3):287-96. PubMed ID: 2537266 [TBL] [Abstract][Full Text] [Related]
29. Arrangement of high-energy neutron irradiation field and shielding experiment using 4 m concrete at KENS. Nakao N; Yashima H; Kawai M; Oishi K; Nakashima H; Masumoto K; Matsumura H; Sasaki S; Numajiri M; Sanami T; Wang Q; Toyoda A; Takahashi K; Iijima K; Eda K; Ban S; Hirayama H; Muto S; Nunomiya T; Yonai S; Rasolonjatovo DR; Terunuma K; Yamauchi K; Sarkar PK; Kim E; Nakamura T; Maruhashi A Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):553-7. PubMed ID: 16604697 [TBL] [Abstract][Full Text] [Related]
30. Measurements of the response functions of a large size NE213 organic liquid scintillator for neutrons up to 800 MeV. Taniguchi S; Moriya T; Takada M; Hatanaka K; Wakasa T; Saito T Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):175-9. PubMed ID: 16604622 [TBL] [Abstract][Full Text] [Related]
31. Study of the neutron field in the vicinity of an unshielded PET cyclotron. Méndez R; Iñiguez MP; Martí-Climent JM; Peñuelas I; Vega-Carrillo HR; Barquero R Phys Med Biol; 2005 Nov; 50(21):5141-52. PubMed ID: 16237246 [TBL] [Abstract][Full Text] [Related]
32. Systematic out-of-field secondary neutron spectrometry and dosimetry in pencil beam scanning proton therapy. Trinkl S; Mares V; Englbrecht FS; Wilkens JJ; Wielunski M; Parodi K; Rühm W; Hillbrand M Med Phys; 2017 May; 44(5):1912-1920. PubMed ID: 28294362 [TBL] [Abstract][Full Text] [Related]
33. Measurements of neutron energy spectra from 7Li(p,n)7Be reaction with Bonner sphere spectrometer, Nested Neutron Spectrometer and ROSPEC. Atanackovic J; Matysiak W; Witharana S; Dubeau J; Waker AJ Radiat Prot Dosimetry; 2014 Oct; 161(1-4):221-4. PubMed ID: 24298169 [TBL] [Abstract][Full Text] [Related]
34. Radiation protection measurements around a 12 MeV mobile dedicated IORT accelerator. Soriani A; Felici G; Fantini M; Paolucci M; Borla O; Evangelisti G; Benassi M; Strigari L Med Phys; 2010 Mar; 37(3):995-1003. PubMed ID: 20384235 [TBL] [Abstract][Full Text] [Related]
35. Measurements of the neutron yields from 7Li(p,n)7Be reaction (thick target) with incident energies from 1.885 to 2.0 MeV. Yu W; Yue G; Han X; Chen J; Tian B Med Phys; 1998 Jul; 25(7 Pt 1):1222-4. PubMed ID: 9682210 [TBL] [Abstract][Full Text] [Related]
36. [Principle of neutron teletherapy with the Soviet U-120 cyclotron]. Letov VN; Bel'skiĭ EM; Ievlev SM; Komov AI; Protasevich ET Med Radiol (Mosk); 1987 Jun; 32(6):27-33. PubMed ID: 3110536 [TBL] [Abstract][Full Text] [Related]
37. New neutron sources for radiotherapy. Bewley DK; Meulders JP; Page BC Phys Med Biol; 1984 Apr; 29(4):341-9. PubMed ID: 6326167 [TBL] [Abstract][Full Text] [Related]
38. Evaluation and Mitigation of Secondary Dose Delivered to Electronic Systems in Proton Therapy. Wroe AJ Technol Cancer Res Treat; 2016 Feb; 15(1):3-11. PubMed ID: 25616623 [TBL] [Abstract][Full Text] [Related]
39. Accelerator-based epithermal neutron beam design for neutron capture therapy. Yanch JC; Zhou XL; Shefer RE; Klinkowstein RE Med Phys; 1992; 19(3):709-21. PubMed ID: 1324392 [TBL] [Abstract][Full Text] [Related]
40. A shielding design for an accelerator-based neutron source for boron neutron capture therapy. Hawk AE; Blue TE; Woollard JE Appl Radiat Isot; 2004 Nov; 61(5):1027-31. PubMed ID: 15308187 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]