These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 11569635)
41. DISCRIMINATION METHOD FOR GAMMA RAY DOSES IN NEUTRON FIELDS USING AN IONIZATION CHAMBER WITH ATTENUATION FILTERS. Ogawara R; Suda M; Hagihara T; Kodaira S; Hamano T Radiat Prot Dosimetry; 2019 May; 183(1-2):280-284. PubMed ID: 30726975 [TBL] [Abstract][Full Text] [Related]
42. Measurement of the neutron leakage from a dedicated intraoperative radiation therapy electron linear accelerator and a conventional linear accelerator for 9, 12, 15(16), and 18(20) MeV electron energies. Jaradat AK; Biggs PJ Med Phys; 2008 May; 35(5):1711-7. PubMed ID: 18561646 [TBL] [Abstract][Full Text] [Related]
43. A study of gamma-ray and neutron radiation in the interaction of a 2 MeV proton beam with various materials. Kasatov D; Makarov A; Shchudlo I; Taskaev S Appl Radiat Isot; 2015 Dec; 106():38-40. PubMed ID: 26298434 [TBL] [Abstract][Full Text] [Related]
44. Gamma dose measurement in a d(80) + Be neutron beam. Harrison GH; Cox CR Med Phys; 1979; 6(3):233-4. PubMed ID: 470850 [TBL] [Abstract][Full Text] [Related]
45. Characterization of the secondary neutron field produced during treatment of an anthropomorphic phantom with x-rays, protons and carbon ions. Tessa CL; Berger T; Kaderka R; Schardt D; Burmeister S; Labrenz J; Reitz G; Durante M Phys Med Biol; 2014 Apr; 59(8):2111-25. PubMed ID: 24694920 [TBL] [Abstract][Full Text] [Related]
46. [Neutron pollution in roentgen beams from electron accelerators]. Fehrentz D; Hassib GM; Spyropoulos B Strahlentherapie; 1983 Nov; 159(11):703-12. PubMed ID: 6658859 [TBL] [Abstract][Full Text] [Related]
47. Direction distribution of ambient neutron dose equivalent from 20 MeV protons incident on thick Be and Cu targets. Sunil C; Shanbhag AA; Nandy M; Maiti M; Bandyopadhyay T; Sarkar PK Radiat Prot Dosimetry; 2009 Sep; 136(2):67-73. PubMed ID: 19700498 [TBL] [Abstract][Full Text] [Related]
49. Design for an accelerator-based orthogonal epithermal neutron beam for boron neutron capture therapy. Allen DA; Beynon TD; Green S Med Phys; 1999 Jan; 26(1):71-6. PubMed ID: 9949400 [TBL] [Abstract][Full Text] [Related]
50. The production by 72 MeV protons of keV neutrons for 10B neutron capture therapy. Condé H; Crawford JF; Dahl B; Grusell E; Larsson B; Petterson CB; Reist H; Sjöstrand NG; Sornsuntisook O; Thuresson L Strahlenther Onkol; 1989 Apr; 165(4):340-2. PubMed ID: 2540542 [TBL] [Abstract][Full Text] [Related]
51. Interaction between the biological effects of high- and low-LET radiation dose components in a mixed field exposure. Mason AJ; Giusti V; Green S; Munck af Rosenschöld P; Beynon TD; Hopewell JW Int J Radiat Biol; 2011 Dec; 87(12):1162-72. PubMed ID: 21923301 [TBL] [Abstract][Full Text] [Related]
52. Measurements of neutron effective doses and attenuation lengths for shielding materials at the heavy-ion medical accelerator in Chiba. Kumamoto Y; Noda Y; Sato Y; Kanai T; Murakami T Health Phys; 2005 May; 88(5):469-79. PubMed ID: 15824595 [TBL] [Abstract][Full Text] [Related]
53. Benchmarking of activation reaction distribution in an intermediate energy neutron field. Ogawa T; Morev MN; Hirota M; Abe T; Koike Y; Iwai S; Iimoto T; Kosako T Radiat Prot Dosimetry; 2011 Jul; 146(1-3):356-9. PubMed ID: 21515619 [TBL] [Abstract][Full Text] [Related]
54. The evaluation of neutron and gamma ray dose equivalent distributions in patients and the effectiveness of shield materials for high energy photons radiotherapy facilities. Ghassoun J; Senhou N Appl Radiat Isot; 2012 Apr; 70(4):620-4. PubMed ID: 22257567 [TBL] [Abstract][Full Text] [Related]
55. Phosphorus activation neutron dosimetry and its application to an 18-MV radiotherapy accelerator. Bading JR; Zeitz L; Laughlin JS Med Phys; 1982; 9(6):835-43. PubMed ID: 6819434 [TBL] [Abstract][Full Text] [Related]
56. An accelerator-based neutron microbeam system for studies of radiation effects. Xu Y; Randers-Pehrson G; Marino SA; Bigelow AW; Akselrod MS; Sykora JG; Brenner DJ Radiat Prot Dosimetry; 2011 Jun; 145(4):373-6. PubMed ID: 21131327 [TBL] [Abstract][Full Text] [Related]
57. Secondary photon fields produced in accelerator-based sources for neutron generation. Agosteo S; Cesana A; Garlati L; Pola A; Terrani M Radiat Prot Dosimetry; 2005; 115(1-4):363-8. PubMed ID: 16381747 [TBL] [Abstract][Full Text] [Related]
58. Are high energy proton beams ideal for AB-BNCT? A brief discussion from the viewpoint of fast neutron contamination control. Lee PY; Liu YH; Jiang SH Appl Radiat Isot; 2014 Jun; 88():206-10. PubMed ID: 24721900 [TBL] [Abstract][Full Text] [Related]
59. Evaluation of useful neutron flux for accelerator boron neutron capture therapy using the 7Li(p,n) reaction. Zimin S; Allen BJ Australas Phys Eng Sci Med; 1998 Dec; 21(4):193-9. PubMed ID: 10050350 [TBL] [Abstract][Full Text] [Related]
60. A method for calculating the dose due to capture gamma rays in accelerator mazes. McGinley PH; Miner MS; Mitchum ML Phys Med Biol; 1995 Sep; 40(9):1467-73. PubMed ID: 8532759 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]