These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 11569865)

  • 1. Preconcentration by coprecipitation of arsenic and tin in natural waters with a Ni-pyrrolidine dithiocarbamate complex and their direct determination by solid-sampling atomic-absorption spectrometry.
    Zhang Q; Minami H; Imoue S; Atsuya I
    Fresenius J Anal Chem; 2001 Aug; 370(7):860-4. PubMed ID: 11569865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel slurry sampling analysis of lead in different water samples by electrothermal atomic absorption spectrometry after coprecipitated with cobalt/pyrrolidine dithiocarbamate complex.
    Baysal A; Akman S; Calisir F
    J Hazard Mater; 2008 Oct; 158(2-3):454-9. PubMed ID: 18346848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Total arsenic in foods after sequential wet digestion, dry ashing, coprecipitation with ammonium pyrrolidine dithiocarbamate, and graphite-furnace atomic absorption spectrometry.
    Dabeka RW; Lacroix GM
    J Assoc Off Anal Chem; 1987; 70(5):866-70. PubMed ID: 3680127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Response surface methodology based on central composite design as a chemometric tool for optimization of dispersive-solidification liquid-liquid microextraction for speciation of inorganic arsenic in environmental water samples.
    Asadollahzadeh M; Tavakoli H; Torab-Mostaedi M; Hosseini G; Hemmati A
    Talanta; 2014 Jun; 123():25-31. PubMed ID: 24725860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hollow fiber liquid phase microextraction combined with electrothermal atomic absorption spectrometry for the speciation of arsenic (III) and arsenic (V) in fresh waters and human hair extracts.
    Jiang H; Hu B; Chen B; Xia L
    Anal Chim Acta; 2009 Feb; 634(1):15-21. PubMed ID: 19154804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of heavy metals at sub-ppm levels in seawater and dialysis solutions by FAAS after tetrakis(pyridine)-nickel(II)bis(thiocyanate) coprecipitation.
    Sahin U; Kartal S; Ulgen A
    Anal Sci; 2008 Jun; 24(6):751-7. PubMed ID: 18544864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenic speciation in natural water samples by coprecipitation-hydride generation atomic absorption spectrometry combination.
    Tuzen M; Citak D; Mendil D; Soylak M
    Talanta; 2009 Apr; 78(1):52-6. PubMed ID: 19174202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of cobalt and nickel by graphite-furnace atomic absorption spectrometry after coprecipitation with scandium hydroxide.
    Minami T; Atsumi K; Ueda J
    Anal Sci; 2003 Feb; 19(2):313-5. PubMed ID: 12608766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solidified floating organic drop microextraction (SFODME) for simultaneous separation/preconcentration and determination of cobalt and nickel by graphite furnace atomic absorption spectrometry (GFAAS).
    Bidabadi MS; Dadfarnia S; Shabani AM
    J Hazard Mater; 2009 Jul; 166(1):291-6. PubMed ID: 19117672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of total tin in environmental biological and water samples by atomic absorption spectrometry with graphite furnace.
    Dogan S; Haerdi W
    Int J Environ Anal Chem; 1980; 8(4):249-57. PubMed ID: 7451013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenic speciation in water and snow samples by adsorption onto PHEMA in a micro-pipette-tip and GFAAS detection applying large-volume injection.
    Döker S; Uzun L; Denizli A
    Talanta; 2013 Jan; 103():123-9. PubMed ID: 23200367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Determination of lead with GFAAS using online flow injection].
    Chen ZL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Jun; 27(6):1243-5. PubMed ID: 17763804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dispersive liquid-liquid microextraction combined with graphite furnace atomic absorption spectrometry: ultra trace determination of cadmium in water samples.
    Zeini Jahromi E; Bidari A; Assadi Y; Milani Hosseini MR; Jamali MR
    Anal Chim Acta; 2007 Mar; 585(2):305-11. PubMed ID: 17386679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of arsenic in scalp hair samples from exposed subjects using microwave-assisted digestion with and without enrichment based on cloud point extraction by electrothermal atomic absorption spectrometry.
    Kazi TG; Baig JA; Shah AQ; Kandhro GA; Khan S; Afridi HI; Kolachi NF; Wadhwa SK; Shah F; Baig AM
    J AOAC Int; 2011; 94(1):293-9. PubMed ID: 21391506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Speciation of As(III) and As(V) in water samples by graphite furnace atomic absorption spectrometry after solid phase extraction combined with dispersive liquid-liquid microextraction based on the solidification of floating organic drop.
    Shamsipur M; Fattahi N; Assadi Y; Sadeghi M; Sharafi K
    Talanta; 2014 Dec; 130():26-32. PubMed ID: 25159375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trace determination of lead, chromium and cadmium in herbal medicines using ultrasound-assisted emulsification microextraction combined with graphite furnace atomic absorption spectrometry.
    Aghamohammadi M; Faraji M; Shahdousti P; Kalhor H; Saleh A
    Phytochem Anal; 2015; 26(3):209-14. PubMed ID: 25573256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Direct determination of trace arsenic in coal by slurry-sampling graphite-furnace atomic absorption spectrometry].
    Chen SZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Oct; 24(10):1267-9. PubMed ID: 15760039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dispersive liquid phase microextraction (DLPME) combined with graphite furnace atomic absorption spectrometry (GFAAS) for determination of trace Co and Ni in environmental water and rice samples.
    Jiang H; Qin Y; Hu B
    Talanta; 2008 Feb; 74(5):1160-5. PubMed ID: 18371765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trace level enrichment of lead from environmental water samples utilizing dispersive liquid-liquid microextraction and quantitative determination by graphite furnace atomic absorption spectrometry.
    Teju E; Tadesse B; Megersa N
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(7):833-42. PubMed ID: 24679091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Application of internal standardization to rapid coprecipitation technique using APDC-Cu(II) for FAAS determination of lead in salt].
    Su YD; Li J; Huang Y; Chen LW
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Mar; 26(3):564-6. PubMed ID: 16830782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.