These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 11570755)

  • 1. Analysis of 3-D vibrations of rectangular AT-cut quartz plates with a bi-mesa structure.
    Sekimoto H; Goka S; Watanabe Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Sep; 48(5):1302-7. PubMed ID: 11570755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of a liquid layer on thickness-shear vibrations of rectangular AT-cut quartz plates.
    Lee PC; Huang R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 May; 49(5):604-11. PubMed ID: 12046936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Forced vibrations of SC-cut quartz crystal rectangular plates with partial electrodes by the Lee plate equations.
    Wu R; Wang W; Chen G; Du J; Ma T; Wang J
    Ultrasonics; 2016 Feb; 65():338-44. PubMed ID: 26433435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free and forced vibrations of SC-cut quartz crystal rectangular plates with the first-order Mindlin plate equations.
    Wu R; Wang W; Chen G; Chen H; Ma T; Du J; Wang J
    Ultrasonics; 2017 Jan; 73():96-106. PubMed ID: 27623522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thickness-shear and thickness-twist vibrations of an AT-cut quartz mesa resonator.
    He H; Liu J; Yang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Oct; 58(10):2050-5. PubMed ID: 21989869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An analysis of thickness-shear vibrations of doubly-rotated quartz crystal plates with the corrected first-order Mindlin plate equations.
    Du J; Wang W; Chen G; Wu R; Huang D; Ma T; Wang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Nov; 60(11):2371-80. PubMed ID: 24158292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A perturbation method for finite element modeling of piezoelectric vibrations in quartz plate resonators.
    Yong YK; Zhang Z
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(5):551-62. PubMed ID: 18263220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mass-frequency influence surface, mode shapes, and frequency spectrum of a rectangular AT-cut quartz plate.
    Yong YK; Stewart JT
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(1):67-73. PubMed ID: 18267559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical effects of electrodes on the vibrations of quartz crystal plates.
    Lee PC; Huang R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 May; 49(5):612-25. PubMed ID: 12046937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thickness-shear and thickness-twist modes in an AT-cut quartz acoustic wave filter.
    Zhao Z; Qian Z; Wang B; Yang J
    Ultrasonics; 2015 Apr; 58():1-5. PubMed ID: 25627930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overtone frequency spectra for x3-dependent modes in AT-cut quartz resonators.
    Zhu J; Chen W; Yang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Apr; 60(4):858-63. PubMed ID: 23549548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thickness-shear mode shapes and mass-frequency influence surface of a circular and electroded AT-cut quartz resonator.
    Yong YK; Stewart JT; Detaint J; Zarka A; Capelle B; Zheng Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(5):609-17. PubMed ID: 18267672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An analysis of nonlinear vibrations of coupled thickness-shear and flexural modes of quartz crystal plates with the homotopy analysis method.
    Wu R; Wang J; Du J; Huang D; Yan W; Hu Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jan; 59(1):30-9. PubMed ID: 22293733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical algorithms and results for SC-cut quartz plates vibrating at the third harmonic overtone of thickness shear.
    Yong YK; Zhang Z
    IEEE Trans Ultrason Ferroelectr Freq Control; 1994; 41(5):685-93. PubMed ID: 18263256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the accuracy of Mindlin plate predictions for the frequency-temperature behavior of resonant modes in AT- and SC-cut quartz plates.
    Yong YK; Wang J; Imai T
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):1-13. PubMed ID: 18238393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frequency spectra of AT-cut quartz plates with electrodes of unequal thickness.
    Wang J; Hu Y; Yang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 May; 57(5):1146-51. PubMed ID: 20442025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resonant frequency function of thickness-shear vibrations of rectangular crystal plates.
    Wang J; Yang L; Pan Q; Chao MC; Du J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 May; 58(5):1102-7. PubMed ID: 21622066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Propagation of thickness shear waves in a periodically corrugated quartz crystal plate and its application exploration in acoustic wave filters.
    Li P; Cheng L
    Ultrasonics; 2017 May; 77():100-109. PubMed ID: 28214750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy trapping in high-frequency vibrations of piezoelectric plates with partial mass layers under lateral electric field excitation.
    Liu B; Jiang Q; Xie H; Yang J
    Ultrasonics; 2011 Apr; 51(3):376-81. PubMed ID: 21145572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling Vibration Analysis of Trapped-Energy Rectangular Quartz Resonators by Variational Formulation of Mindlin's Theory.
    Li N; Wang B; Qian Z
    Sensors (Basel); 2018 Mar; 18(4):. PubMed ID: 29587469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.