These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 11570760)

  • 1. Analysis of thickness modes of contoured doubly rotated, quartz resonators.
    EerNisse EP
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Sep; 48(5):1351-61. PubMed ID: 11570760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Doubly rotated contoured quartz resonators.
    Sinha BK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Sep; 48(5):1162-80. PubMed ID: 11570746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An analysis of thickness-shear vibrations of doubly-rotated quartz crystal plates with the corrected first-order Mindlin plate equations.
    Du J; Wang W; Chen G; Wu R; Huang D; Ma T; Wang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Nov; 60(11):2371-80. PubMed ID: 24158292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variational formulation of the Stevens-Tiersten equation and application in the analysis of rectangular trapped-energy quartz resonators.
    Shi J; Fan C; Zhao M; Yang J
    J Acoust Soc Am; 2014 Jan; 135(1):175-81. PubMed ID: 24437757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An analysis of the thickness vibration of an unelectroded doubly-rotated quartz circular plate.
    Xie L; Wang S; Zhang C; Wang J
    J Acoust Soc Am; 2018 Aug; 144(2):814. PubMed ID: 30180667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane analogy of the Stevens-Tiersten equation for essentially thickness modes in plate quartz resonators.
    Zhang W; Yang Z; Yang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1665-8. PubMed ID: 18986957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental verification of stress compensation in the SBTC-cut.
    Valdois M; Sinha BK; Boy JJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 1989; 36(6):643-51. PubMed ID: 18290245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thickness-shear modes of an elliptical, contoured AT-cut quartz resonator.
    Wang W; Wu R; Wang J; Du J; Yang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jun; 60(6):1192-8. PubMed ID: 25004481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free and forced vibrations of SC-cut quartz crystal rectangular plates with the first-order Mindlin plate equations.
    Wu R; Wang W; Chen G; Chen H; Ma T; Du J; Wang J
    Ultrasonics; 2017 Jan; 73():96-106. PubMed ID: 27623522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overtone frequency spectra for x3-dependent modes in AT-cut quartz resonators.
    Zhu J; Chen W; Yang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Apr; 60(4):858-63. PubMed ID: 23549548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Forced vibrations of SC-cut quartz crystal rectangular plates with partial electrodes by the Lee plate equations.
    Wu R; Wang W; Chen G; Du J; Ma T; Wang J
    Ultrasonics; 2016 Feb; 65():338-44. PubMed ID: 26433435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Semi-Analytical Solution for the Thickness-Vibration of Centrally Partially-Electroded Circular AT-Cut Quartz Resonators.
    Wang B; Dai X; Zhao X; Qian Z
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28783124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Five-mode frequency spectra of x3-dependent modes in AT-cut quartz resonators.
    Chen G; Wu R; Wang J; Du J; Yang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Apr; 59(4):811-6. PubMed ID: 22547292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Doubly rotated quartz resonators with a low amplitude-frequency effect: the LD-cut.
    Gufflet N; Sthal F; Boy JJ; Bourquin R; Mourey M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Nov; 48(6):1681-5. PubMed ID: 11800131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A corrected modal representation of thickness vibrations in quartz plates and its influence on the transversely varying case.
    Tiersten HF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Nov; 50(11):1436-43. PubMed ID: 14682627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An analysis of partially electroded, contoured, quartz resonators with beveled cylindrical edges.
    Yang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Nov; 54(11):2407-9. PubMed ID: 18051176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental measurement of the frequency shifts of degenerate thickness-shear modes in a rotated Y-cut quartz resonator subject to diametrical forces.
    Bao Y; Zhang H; Kosinski JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Mar; 62(3):560-4. PubMed ID: 25768821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental study on the characteristic of the NS-GT cut quartz crystal resonator oscillating in the sub-resonant frequency.
    Yamagata S; Kawashima H
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(5):1175-82. PubMed ID: 18244311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distortions of thickness shear mode shapes in plano-convex quartz resonators with mass perturbations.
    Eernisse EP; Clayton LD; Watts MH
    IEEE Trans Ultrason Ferroelectr Freq Control; 1990; 37(6):571-6. PubMed ID: 18285080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A dual-mode thickness-shear quartz pressure sensor.
    Besson RJ; Boy JJ; Glotin B; Jinzaki Y; Sinha B; Valdois M
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(5):584-91. PubMed ID: 18263223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.