These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 11570774)
1. Force-frequency coefficient of symmetrical incomplete circular quartz crystal resonator. Wang Z; Zhu H; Dong Y; Wang J; Feng G IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Sep; 48(5):1471-9. PubMed ID: 11570774 [TBL] [Abstract][Full Text] [Related]
2. Effect of transverse force on the performance of quartz resonator force sensors. Wang Z; Dong Y; Zhu H; Feng G IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Apr; 51(4):470-6. PubMed ID: 15139549 [TBL] [Abstract][Full Text] [Related]
3. Forced vibrations of SC-cut quartz crystal rectangular plates with partial electrodes by the Lee plate equations. Wu R; Wang W; Chen G; Du J; Ma T; Wang J Ultrasonics; 2016 Feb; 65():338-44. PubMed ID: 26433435 [TBL] [Abstract][Full Text] [Related]
4. A Semi-Analytical Solution for the Thickness-Vibration of Centrally Partially-Electroded Circular AT-Cut Quartz Resonators. Wang B; Dai X; Zhao X; Qian Z Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28783124 [TBL] [Abstract][Full Text] [Related]
5. An analysis of thickness-shear vibrations of doubly-rotated quartz crystal plates with the corrected first-order Mindlin plate equations. Du J; Wang W; Chen G; Wu R; Huang D; Ma T; Wang J IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Nov; 60(11):2371-80. PubMed ID: 24158292 [TBL] [Abstract][Full Text] [Related]
6. Resonant frequency function of thickness-shear vibrations of rectangular crystal plates. Wang J; Yang L; Pan Q; Chao MC; Du J IEEE Trans Ultrason Ferroelectr Freq Control; 2011 May; 58(5):1102-7. PubMed ID: 21622066 [TBL] [Abstract][Full Text] [Related]
7. An Analysis of the Thermal Behavior and Effects of Circular Quartz Crystal Resonators for Microbalance Applications. Huang Q; Wang J; Gan N; Ma T; Huang B; Neubig B; Johannsmann D IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Aug; 69(8):2569-2578. PubMed ID: 35704535 [TBL] [Abstract][Full Text] [Related]
8. Mechanical effects of electrodes on the vibrations of quartz crystal plates. Lee PC; Huang R IEEE Trans Ultrason Ferroelectr Freq Control; 2002 May; 49(5):612-25. PubMed ID: 12046937 [TBL] [Abstract][Full Text] [Related]
9. On the acceleration sensitivity and its active reduction by edge electrodes in AT-cut quartz resonators. Chen J; Yong YK; Kubena R; Kirby D; Chang D IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jun; 62(6):1104-13. PubMed ID: 26067045 [TBL] [Abstract][Full Text] [Related]
10. Force-frequency effect of thickness mode langasite resonators. Zhang H; Turner JA; Yang J; Kosinski JA Ultrasonics; 2010 Apr; 50(4-5):479-90. PubMed ID: 19942246 [TBL] [Abstract][Full Text] [Related]
11. Effects of a liquid layer on thickness-shear vibrations of rectangular AT-cut quartz plates. Lee PC; Huang R IEEE Trans Ultrason Ferroelectr Freq Control; 2002 May; 49(5):604-11. PubMed ID: 12046936 [TBL] [Abstract][Full Text] [Related]
12. Effects of air resistance on AT-cut quartz thickness-shear resonators. Chen Y; Wang J; Du J; Zhang W; Yang J IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Feb; 60(2):402-7. PubMed ID: 23357914 [TBL] [Abstract][Full Text] [Related]
13. The calculation of electrical parameters of AT-cut quartz crystal resonators with the consideration of material viscosity. Wang J; Zhao W; Du J; Hu Y Ultrasonics; 2011 Jan; 51(1):65-70. PubMed ID: 20594568 [TBL] [Abstract][Full Text] [Related]
14. Resonances and energy trapping in AT-cut quartz resonators operating with fast shear modes driven by lateral electric fields produced by surface electrodes. Ma T; Wang J; Du J; Yang J Ultrasonics; 2015 May; 59():14-20. PubMed ID: 25660411 [TBL] [Abstract][Full Text] [Related]
15. Thickness-shear vibrations of rotated Y-cut quartz plates with imperfectly bonded surface mass layers. Yang J; Hu Y; Zeng Y; Fan H IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Jan; 53(1):241-5. PubMed ID: 16471451 [TBL] [Abstract][Full Text] [Related]
16. The determination of the optimal length of crystal blanks in quartz crystal resonators. Wang J; Zhao W IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Nov; 52(11):2023-30. PubMed ID: 16422414 [TBL] [Abstract][Full Text] [Related]
17. Second-order theories for extensional vibrations of piezoelectric crystal plates and strips. Lee PC; Edwards NP; Lin WS; Syngellakis S IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Nov; 49(11):1497-506. PubMed ID: 12484472 [TBL] [Abstract][Full Text] [Related]
18. Experimental measurement of the frequency shifts of degenerate thickness-shear modes in a rotated Y-cut quartz resonator subject to diametrical forces. Bao Y; Zhang H; Kosinski JA IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Mar; 62(3):560-4. PubMed ID: 25768821 [TBL] [Abstract][Full Text] [Related]
19. Experimental study on the characteristic of the NS-GT cut quartz crystal resonator oscillating in the sub-resonant frequency. Yamagata S; Kawashima H IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(5):1175-82. PubMed ID: 18244311 [TBL] [Abstract][Full Text] [Related]
20. Free and forced vibrations of SC-cut quartz crystal rectangular plates with the first-order Mindlin plate equations. Wu R; Wang W; Chen G; Chen H; Ma T; Du J; Wang J Ultrasonics; 2017 Jan; 73():96-106. PubMed ID: 27623522 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]