These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 11570774)
21. Study of Force-Frequency Characteristics in AT-Cut Strip Quartz Crystal Resonators with Different Rotation Angles. Yang G; Huang X; Tan K; Chen Q; Pan W Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991707 [TBL] [Abstract][Full Text] [Related]
22. Effects of unequal electrode pairs on an x-strip thickness-shear mode multi-channel quartz crystal microbalance. Zhao Z; Qian Z; Wang B Ultrasonics; 2016 Dec; 72():73-9. PubMed ID: 27484997 [TBL] [Abstract][Full Text] [Related]
23. The determination of electrical parameters of quartz crystal resonators with the consideration of dissipation. Wang J; Zhao W; Du J Ultrasonics; 2006 Dec; 44 Suppl 1():e869-73. PubMed ID: 16843512 [TBL] [Abstract][Full Text] [Related]
24. Analysis of aging of piezoelectric crystal resonators. Asiz A; Zhang W; Xi Y IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Dec; 50(12):1647-55. PubMed ID: 14761034 [TBL] [Abstract][Full Text] [Related]
25. Experimental measurements of the force-frequency effect of thickness-mode langasite resonators. Zhang H; Turner JA; Kosinski JA IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jul; 60(7):1475-8. PubMed ID: 25004514 [TBL] [Abstract][Full Text] [Related]
26. The frequency-temperature analysis equations of piezoelectric plates with Lee plate theory. Wang J IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(4):1042-6. PubMed ID: 18238510 [TBL] [Abstract][Full Text] [Related]
27. Numerical algorithms and results for SC-cut quartz plates vibrating at the third harmonic overtone of thickness shear. Yong YK; Zhang Z IEEE Trans Ultrason Ferroelectr Freq Control; 1994; 41(5):685-93. PubMed ID: 18263256 [TBL] [Abstract][Full Text] [Related]
28. Governing equations for a piezoelectric plate with graded properties across the thickness. Lee PY; Yu JD IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(1):236-50. PubMed ID: 18244175 [TBL] [Abstract][Full Text] [Related]
29. SC-Cut Quartz Resonators for Dynamic Liquid Viscosity Measurements. Ju S; Zhang C; Zahedinejad P; Zhang H IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Dec; 68(12):3616-3623. PubMed ID: 34255627 [TBL] [Abstract][Full Text] [Related]
30. An analysis of the thickness vibration of an unelectroded doubly-rotated quartz circular plate. Xie L; Wang S; Zhang C; Wang J J Acoust Soc Am; 2018 Aug; 144(2):814. PubMed ID: 30180667 [TBL] [Abstract][Full Text] [Related]
31. Stress-induced frequency shifts of degenerate thickness-shear modes in rotated Y-cut quartz resonators. Kosinski JA; Pastore RA; Yang J; Yang X; Turner JA IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Aug; 57(8):1880-3. PubMed ID: 20679018 [TBL] [Abstract][Full Text] [Related]
32. High-frequency vibration of beveled crystal plates by using subregional geometric fitting method. Sun Z; Wang Z; Li Z; Guo Y; Huang B Sci Rep; 2024 Jul; 14(1):17131. PubMed ID: 39054382 [TBL] [Abstract][Full Text] [Related]
33. Five-mode frequency spectra of x3-dependent modes in AT-cut quartz resonators. Chen G; Wu R; Wang J; Du J; Yang J IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Apr; 59(4):811-6. PubMed ID: 22547292 [TBL] [Abstract][Full Text] [Related]
34. Study of the Relation between the Resonance Behavior of Thickness Shear Mode (TSM) Sensors and the Mechanical Characteristics of Biofilms. Castro P; Elvira L; Maestre JR; Montero de Espinosa F Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28617343 [TBL] [Abstract][Full Text] [Related]
35. The fifth-order overtone vibrations of quartz crystal plates with corrected higher-order Mindlin plate equations. Wang J; Wu R; Yang L; Du J; Ma T IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Oct; 59(10):2278-91. PubMed ID: 23143577 [TBL] [Abstract][Full Text] [Related]
36. Thickness-shear mode shapes and mass-frequency influence surface of a circular and electroded AT-cut quartz resonator. Yong YK; Stewart JT; Detaint J; Zarka A; Capelle B; Zheng Y IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(5):609-17. PubMed ID: 18267672 [TBL] [Abstract][Full Text] [Related]
37. Quartz crystal microbalance based on torsional piezoelectric resonators. Bücking W; Du B; Turshatov A; König AM; Reviakine I; Bode B; Johannsmann D Rev Sci Instrum; 2007 Jul; 78(7):074903. PubMed ID: 17672786 [TBL] [Abstract][Full Text] [Related]
38. An analysis of nonlinear vibrations of coupled thickness-shear and flexural modes of quartz crystal plates with the homotopy analysis method. Wu R; Wang J; Du J; Huang D; Yan W; Hu Y IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jan; 59(1):30-9. PubMed ID: 22293733 [TBL] [Abstract][Full Text] [Related]
39. A few transient effects in AT-cut quartz thickness-shear resonators. Zhang R; Hu H IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Dec; 58(12):2758-62. PubMed ID: 23443713 [TBL] [Abstract][Full Text] [Related]
40. Coupling Vibration Analysis of Trapped-Energy Rectangular Quartz Resonators by Variational Formulation of Mindlin's Theory. Li N; Wang B; Qian Z Sensors (Basel); 2018 Mar; 18(4):. PubMed ID: 29587469 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]