BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 11570870)

  • 1. An unusually low pK(a) for Cys282 in the active site of human muscle creatine kinase.
    Wang PF; McLeish MJ; Kneen MM; Lee G; Kenyon GL
    Biochemistry; 2001 Oct; 40(39):11698-705. PubMed ID: 11570870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determinants of cysteine pKa values in creatine kinase and alpha1-antitrypsin.
    Naor MM; Jensen JH
    Proteins; 2004 Dec; 57(4):799-803. PubMed ID: 15476207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Creatine kinase: a role for arginine-95 in creatine binding and active site organization.
    Edmiston PL; Schavolt KL; Kersteen EA; Moore NR; Borders CL
    Biochim Biophys Acta; 2001 Apr; 1546(2):291-8. PubMed ID: 11295435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rabbit muscle creatine kinase: consequences of the mutagenesis of conserved histidine residues.
    Chen LH; Borders CL; Vásquez JR; Kenyon GL
    Biochemistry; 1996 Jun; 35(24):7895-902. PubMed ID: 8672491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of an active monomer of rabbit muscle creatine kinase by site-directed mutagenesis: the effect of quaternary structure on catalysis and stability.
    Cox JM; Davis CA; Chan C; Jourden MJ; Jorjorian AD; Brym MJ; Snider MJ; Borders CL; Edmiston PL
    Biochemistry; 2003 Feb; 42(7):1863-71. PubMed ID: 12590573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asparagine 285 plays a key role in transition state stabilization in rabbit muscle creatine kinase.
    Borders CL; MacGregor KM; Edmiston PL; Gbeddy ER; Thomenius MJ; Mulligan GB; Snider MJ
    Protein Sci; 2003 Mar; 12(3):532-7. PubMed ID: 12592023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A conserved negatively charged cluster in the active site of creatine kinase is critical for enzymatic activity.
    Eder M; Stolz M; Wallimann T; Schlattner U
    J Biol Chem; 2000 Sep; 275(35):27094-9. PubMed ID: 10829032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the role of the active site cysteine in human muscle creatine kinase.
    Wang PF; Flynn AJ; Naor MM; Jensen JH; Cui G; Merz KM; Kenyon GL; McLeish MJ
    Biochemistry; 2006 Sep; 45(38):11464-72. PubMed ID: 16981706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of Arg-96 in Danio rerio creatine kinase in substrate recognition and active center configuration.
    Uda K; Kuwasaki A; Shima K; Matsumoto T; Suzuki T
    Int J Biol Macromol; 2009 Jun; 44(5):413-8. PubMed ID: 19428475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The active site histidines of creatine kinase. A critical role of His 61 situated on a flexible loop.
    Forstner M; Müller A; Stolz M; Wallimann T
    Protein Sci; 1997 Feb; 6(2):331-9. PubMed ID: 9041634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Creatine kinase: the reactive cysteine is required for synergism but is nonessential for catalysis.
    Furter R; Furter-Graves EM; Wallimann T
    Biochemistry; 1993 Jul; 32(27):7022-9. PubMed ID: 8334132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The structural basis for the perturbed pKa of the catalytic base in 4-oxalocrotonate tautomerase: kinetic and structural effects of mutations of Phe-50.
    Czerwinski RM; Harris TK; Massiah MA; Mildvan AS; Whitman CP
    Biochemistry; 2001 Feb; 40(7):1984-95. PubMed ID: 11329265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutagenesis of two acidic active site residues in human muscle creatine kinase: implications for the catalytic mechanism.
    Cantwell JS; Novak WR; Wang PF; McLeish MJ; Kenyon GL; Babbitt PC
    Biochemistry; 2001 Mar; 40(10):3056-61. PubMed ID: 11258919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of mutations of the active site arginine residues in 4-oxalocrotonate tautomerase on the pKa values of active site residues and on the pH dependence of catalysis.
    Czerwinski RM; Harris TK; Johnson WH; Legler PM; Stivers JT; Mildvan AS; Whitman CP
    Biochemistry; 1999 Sep; 38(38):12358-66. PubMed ID: 10493803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of phosphagen specificity loops in arginine kinase.
    Azzi A; Clark SA; Ellington WR; Chapman MS
    Protein Sci; 2004 Mar; 13(3):575-85. PubMed ID: 14978299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loop movement and catalysis in creatine kinase.
    Wang PF; Flynn AJ; McLeish MJ; Kenyon GL
    IUBMB Life; 2005; 57(4-5):355-62. PubMed ID: 16036620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cysteine 42 is important for maintaining an integral active site for O-acetylserine sulfhydrylase resulting in the stabilization of the alpha-aminoacrylate intermediate.
    Tai CH; Yoon MY; Kim SK; Rege VD; Nalabolu SR; Kredich NM; Schnackerz KD; Cook PF
    Biochemistry; 1998 Jul; 37(30):10597-604. PubMed ID: 9692949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of the catalytic site of creatine kinase by site-directed mutagenesis.
    Lin L; Perryman MB; Friedman D; Roberts R; Ma TS
    Biochim Biophys Acta; 1994 May; 1206(1):97-104. PubMed ID: 8186255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative study of human muscle and brain creatine kinases expressed in Escherichia coli.
    Chen LH; White CB; Babbitt PC; McLeish MJ; Kenyon GL
    J Protein Chem; 2000 Jan; 19(1):59-66. PubMed ID: 10882173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic and spectroscopic studies of Tritrichomonas foetus low-molecular weight phosphotyrosyl phosphatase. Hydrogen bond networks and electrostatic effects.
    Thomas CL; McKinnon E; Granger BL; Harms E; Van Etten RL
    Biochemistry; 2002 Dec; 41(52):15601-9. PubMed ID: 12501188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.