These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 11570886)
1. Characterization of the metal-substituted dipeptidyl peptidase III (rat liver). Hirose J; Iwamoto H; Nagao I; Enmyo K; Sugao H; Kanemitu N; Ikeda K; Takeda M; Inoue M; Ikeda T; Matsuura F; Fukasawa KM; Fukasawa K Biochemistry; 2001 Oct; 40(39):11860-5. PubMed ID: 11570886 [TBL] [Abstract][Full Text] [Related]
2. The metal-binding motif of dipeptidyl peptidase III directly influences the enzyme activity in the copper derivative of dipeptidyl peptidase III. Hirose J; Kamigakiuchi H; Iwamoto H; Fujii H; Nakai M; Takenaka M; Kataoka R; Sugahara M; Yamamoto S; Fukasawa KM Arch Biochem Biophys; 2004 Nov; 431(1):1-8. PubMed ID: 15464720 [TBL] [Abstract][Full Text] [Related]
3. Flexibility of the coordination geometry around the cupric ions in Cu(II)-rat dipeptidyl peptidase III is important for the expression of enzyme activity. Hirose J; Hata T; Kawaoka C; Ikeura T; Kitahara S; Horii K; Tomida H; Iwamoto H; Ono Y; Fukasawa KM Arch Biochem Biophys; 2012 Sep; 525(1):71-81. PubMed ID: 22683474 [TBL] [Abstract][Full Text] [Related]
4. In rat dipeptidyl peptidase III, His⁵⁶⁸ is essential for catalysis, and Glu⁵⁰⁷ or Glu⁵¹² stabilizes the coordination bond between His⁴⁵⁵ or His⁴⁵⁰ and zinc ion. Fukasawa KM; Hirose J; Hata T; Ono Y Biochim Biophys Acta; 2010 Oct; 1804(10):2063-9. PubMed ID: 20601226 [TBL] [Abstract][Full Text] [Related]
5. Effects of conversion of the zinc-binding motif sequence of thermolysin, HEXXH, to that of dipeptidyl peptidase III, HEXXXH, on the activity and stability of thermolysin. Menach E; Hashida Y; Yasukawa K; Inouye K Biosci Biotechnol Biochem; 2013; 77(9):1901-6. PubMed ID: 24018667 [TBL] [Abstract][Full Text] [Related]
6. The HELLGH motif of rat liver dipeptidyl peptidase III is involved in zinc coordination and the catalytic activity of the enzyme. Fukasawa K; Fukasawa KM; Iwamoto H; Hirose J; Harada M Biochemistry; 1999 Jun; 38(26):8299-303. PubMed ID: 10387075 [TBL] [Abstract][Full Text] [Related]
7. Dipeptidyl peptidase III from rat liver cytosol: purification, molecular cloning and immunohistochemical localization. Ohkubo I; Li YH; Maeda T; Yamamoto Y; Yamane T; Du PG; Nishi K Biol Chem; 1999 Dec; 380(12):1421-30. PubMed ID: 10661869 [TBL] [Abstract][Full Text] [Related]
8. New Zinc Ion Parameters Suitable for Classical MD Simulations of Zinc Metallopeptidases. Tomić A; Horvat G; Ramek M; Agić D; Brkić H; Tomić S J Chem Inf Model; 2019 Aug; 59(8):3437-3453. PubMed ID: 31274304 [TBL] [Abstract][Full Text] [Related]
9. Hunting the human DPP III active conformation: combined thermodynamic and QM/MM calculations. Tomić A; Tomić S Dalton Trans; 2014 Nov; 43(41):15503-14. PubMed ID: 25192149 [TBL] [Abstract][Full Text] [Related]
10. [Coordination chemical studies on the zinc enzymes]. Hirose J Yakugaku Zasshi; 2014; 134(11):1109-24. PubMed ID: 25366909 [TBL] [Abstract][Full Text] [Related]
11. Characterization of the metal-binding site in aminopeptidase B. Hirose J; Ohsaki T; Nishimoto N; Matuoka S; Hiromoto T; Yoshida T; Minoura T; Iwamoto H; Fukasawa KM Biol Pharm Bull; 2006 Dec; 29(12):2378-82. PubMed ID: 17142967 [TBL] [Abstract][Full Text] [Related]
12. The first structure of dipeptidyl-peptidase III provides insight into the catalytic mechanism and mode of substrate binding. Baral PK; Jajcanin-Jozić N; Deller S; Macheroux P; Abramić M; Gruber K J Biol Chem; 2008 Aug; 283(32):22316-24. PubMed ID: 18550518 [TBL] [Abstract][Full Text] [Related]
13. Alteration of rat dipeptidyl peptidase III by site-directed mutagenesis: cysteine(176) is a regulatory residue for the enzyme activity. Li YH; Maeda T; Yamane T; Ohkubo I Biochem Biophys Res Commun; 2000 Sep; 276(2):553-8. PubMed ID: 11027512 [TBL] [Abstract][Full Text] [Related]
14. Identification of an Additional Metal-Binding Site in Human Dipeptidyl Peptidase III. Matić A; Šupljika F; Brkić H; Jurasović J; Karačić Z; Tomić S Int J Mol Sci; 2023 Aug; 24(16):. PubMed ID: 37628928 [TBL] [Abstract][Full Text] [Related]
15. Molecular cloning and immunohistochemical localization of rat dipeptidyl peptidase III. Ohkubo I; Li Y; Maeda T; Yamamoto Y; Yamane T; Du PG; Nishi K Forensic Sci Int; 2000 Sep; 113(1-3):147-51. PubMed ID: 10978617 [TBL] [Abstract][Full Text] [Related]
16. Metal preferences of zinc-binding motif on metalloproteases. Fukasawa KM; Hata T; Ono Y; Hirose J J Amino Acids; 2011; 2011():574816. PubMed ID: 22312463 [TBL] [Abstract][Full Text] [Related]
17. Importance of the three basic residues in the vicinity of the zinc-binding motifs for the activity of the yeast dipeptidyl peptidase III. Jajčanin-Jozić N; Tomić S; Abramić M J Biochem; 2014 Jan; 155(1):43-50. PubMed ID: 24136327 [TBL] [Abstract][Full Text] [Related]
18. Unravelling the inhibitory zinc ion binding site and the metal exchange mechanism in human DPP III. Tomić A; Brkić H; Matić A; Tomić S Phys Chem Chem Phys; 2021 Jun; 23(23):13267-13275. PubMed ID: 34095907 [TBL] [Abstract][Full Text] [Related]
19. Human and rat dipeptidyl peptidase III: biochemical and mass spectrometric arguments for similarities and differences. Abramić M; Schleuder D; Dolovcak L; Schröder W; Strupat K; Sagi D; Peter-Katalini J; Vitale L Biol Chem; 2000 Dec; 381(12):1233-43. PubMed ID: 11209758 [TBL] [Abstract][Full Text] [Related]
20. Highly reactive cysteine residues are part of the substrate binding site of mammalian dipeptidyl peptidases III. Abramić M; Simaga S; Osmak M; Cicin-Sain L; Vukelić B; Vlahovicek K; Dolovcak L Int J Biochem Cell Biol; 2004 Mar; 36(3):434-46. PubMed ID: 14687922 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]