BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 11570896)

  • 1. Binding and activation of thiamin diphosphate in acetohydroxyacid synthase.
    Bar-Ilan A; Balan V; Tittmann K; Golbik R; Vyazmensky M; Hübner G; Barak Z; Chipman DM
    Biochemistry; 2001 Oct; 40(39):11946-54. PubMed ID: 11570896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Significant catalytic roles for Glu47 and Gln 110 in all four of the C-C bond-making and -breaking steps of the reactions of acetohydroxyacid synthase II.
    Vyazmensky M; Steinmetz A; Meyer D; Golbik R; Barak Z; Tittmann K; Chipman DM
    Biochemistry; 2011 Apr; 50(15):3250-60. PubMed ID: 21370850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Many of the functional differences between acetohydroxyacid synthase (AHAS) isozyme I and other AHASs are a result of the rapid formation and breakdown of the covalent acetolactate-thiamin diphosphate adduct in AHAS I.
    Belenky I; Steinmetz A; Vyazmensky M; Barak Z; Tittmann K; Chipman DM
    FEBS J; 2012 Jun; 279(11):1967-79. PubMed ID: 22443469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosynthesis of 2-aceto-2-hydroxy acids: acetolactate synthases and acetohydroxyacid synthases.
    Chipman D; Barak Z; Schloss JV
    Biochim Biophys Acta; 1998 Jun; 1385(2):401-19. PubMed ID: 9655946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of a conserved arginine in the mechanism of acetohydroxyacid synthase: catalysis of condensation with a specific ketoacid substrate.
    Engel S; Vyazmensky M; Vinogradov M; Berkovich D; Bar-Ilan A; Qimron U; Rosiansky Y; Barak Z; Chipman DM
    J Biol Chem; 2004 Jun; 279(23):24803-12. PubMed ID: 15044456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of a highly conserved proline-126 in ThDP binding of Mycobacterium tuberculosis acetohydroxyacid synthase.
    Baig IA; Gedi V; Lee SC; Koh SH; Yoon MY
    Enzyme Microb Technol; 2013 Sep; 53(4):243-9. PubMed ID: 23931689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron transfer in acetohydroxy acid synthase as a side reaction of catalysis. Implications for the reactivity and partitioning of the carbanion/enamine form of (alpha-hydroxyethyl)thiamin diphosphate in a "nonredox" flavoenzyme.
    Tittmann K; Schröder K; Golbik R; McCourt J; Kaplun A; Duggleby RG; Barak Z; Chipman DM; Hübner G
    Biochemistry; 2004 Jul; 43(27):8652-61. PubMed ID: 15236573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homology modeling of the structure of bacterial acetohydroxy acid synthase and examination of the active site by site-directed mutagenesis.
    Ibdah M; Bar-Ilan A; Livnah O; Schloss JV; Barak Z; Chipman DM
    Biochemistry; 1996 Dec; 35(50):16282-91. PubMed ID: 8973202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Valine 375 and phenylalanine 109 confer affinity and specificity for pyruvate as donor substrate in acetohydroxy acid synthase isozyme II from Escherichia coli.
    Steinmetz A; Vyazmensky M; Meyer D; Barak ZE; Golbik R; Chipman DM; Tittmann K
    Biochemistry; 2010 Jun; 49(25):5188-99. PubMed ID: 20504042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radical phosphate transfer mechanism for the thiamin diphosphate- and FAD-dependent pyruvate oxidase from Lactobacillus plantarum. Kinetic coupling of intercofactor electron transfer with phosphate transfer to acetyl-thiamin diphosphate via a transient FAD semiquinone/hydroxyethyl-ThDP radical pair.
    Tittmann K; Wille G; Golbik R; Weidner A; Ghisla S; Hübner G
    Biochemistry; 2005 Oct; 44(40):13291-303. PubMed ID: 16201755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of acetohydroxyacid synthase I from Escherichia coli K-12 and identification of its inhibitors.
    Pham NC; Moon JY; Cho JH; Lee SJ; Park JS; Kim DE; Park Y; Yoon MY
    Biosci Biotechnol Biochem; 2010; 74(11):2281-6. PubMed ID: 21071847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Steady-state kinetics and molecular evolution of Escherichia coli MenD [(1R,6R)-2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase], an anomalous thiamin diphosphate-dependent decarboxylase-carboligase.
    Bhasin M; Billinsky JL; Palmer DR
    Biochemistry; 2003 Nov; 42(46):13496-504. PubMed ID: 14621995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The carboligation reaction of acetohydroxyacid synthase II: steady-state intermediate distributions in wild type and mutants by NMR.
    Tittmann K; Vyazmensky M; Hübner G; Barak Z; Chipman DM
    Proc Natl Acad Sci U S A; 2005 Jan; 102(3):553-8. PubMed ID: 15640355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of thiamin diphosphate in enzymes.
    Hübner G; Tittmann K; Killenberg-Jabs M; Schäffner J; Spinka M; Neef H; Kern D; Kern G; Schneider G; Wikner C; Ghisla S
    Biochim Biophys Acta; 1998 Jun; 1385(2):221-8. PubMed ID: 9655909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The crystal structures of Klebsiella pneumoniae acetolactate synthase with enzyme-bound cofactor and with an unusual intermediate.
    Pang SS; Duggleby RG; Schowen RL; Guddat LW
    J Biol Chem; 2004 Jan; 279(3):2242-53. PubMed ID: 14557277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alternating sites reactivity is a common feature of thiamin diphosphate-dependent enzymes as evidenced by isothermal titration calorimetry studies of substrate binding.
    Schröder-Tittmann K; Meyer D; Arens J; Wechsler C; Tietzel M; Golbik R; Tittmann K
    Biochemistry; 2013 Apr; 52(15):2505-7. PubMed ID: 23544868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of the cofactor-binding site of Zymomonas mobilis pyruvate decarboxylase by site-directed mutagenesis.
    Candy JM; Duggleby RG
    Biochem J; 1994 May; 300 ( Pt 1)(Pt 1):7-13. PubMed ID: 8198554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intermediates and transition states in thiamin diphosphate-dependent decarboxylases. A kinetic and NMR study on wild-type indolepyruvate decarboxylase and variants using indolepyruvate, benzoylformate, and pyruvate as substrates.
    Schütz A; Golbik R; König S; Hübner G; Tittmann K
    Biochemistry; 2005 Apr; 44(16):6164-79. PubMed ID: 15835904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thiamin metabolism and thiamin diphosphate-dependent enzymes in the yeast Saccharomyces cerevisiae: genetic regulation.
    Hohmann S; Meacock PA
    Biochim Biophys Acta; 1998 Jun; 1385(2):201-19. PubMed ID: 9655908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acetohydroxyacid synthases: evolution, structure, and function.
    Liu Y; Li Y; Wang X
    Appl Microbiol Biotechnol; 2016 Oct; 100(20):8633-49. PubMed ID: 27576495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.