These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 11571044)

  • 1. Mechanical and metabolic determinants of the preferred step width in human walking.
    Donelan JM; Kram R; Kuo AD
    Proc Biol Sci; 2001 Oct; 268(1480):1985-92. PubMed ID: 11571044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The high cost of swing leg circumduction during human walking.
    Shorter KA; Wu A; Kuo AD
    Gait Posture; 2017 May; 54():265-270. PubMed ID: 28371740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of step width and arm swing on energetic cost and lateral balance during running.
    Arellano CJ; Kram R
    J Biomech; 2011 Apr; 44(7):1291-5. PubMed ID: 21316058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical and metabolic requirements for active lateral stabilization in human walking.
    Donelan JM; Shipman DW; Kram R; Kuo AD
    J Biomech; 2004 Jun; 37(6):827-35. PubMed ID: 15111070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of lateral stabilization on walking in young and old adults.
    Dean JC; Alexander NB; Kuo AD
    IEEE Trans Biomed Eng; 2007 Nov; 54(11):1919-26. PubMed ID: 18018687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The energetic costs of trunk and distal-limb loading during walking and running in guinea fowl Numida meleagris: I. Organismal metabolism and biomechanics.
    Marsh RL; Ellerby DJ; Henry HT; Rubenson J
    J Exp Biol; 2006 Jun; 209(Pt 11):2050-63. PubMed ID: 16709908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stance and swing phase costs in human walking.
    Umberger BR
    J R Soc Interface; 2010 Sep; 7(50):1329-40. PubMed ID: 20356877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compliant walking appears metabolically advantageous at extreme step lengths.
    Kim J; Bertram JEA
    Gait Posture; 2018 Jul; 64():84-89. PubMed ID: 29883939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency.
    Sawicki GS; Ferris DP
    J Exp Biol; 2009 Jan; 212(Pt 1):21-31. PubMed ID: 19088207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple model of bipedal walking predicts the preferred speed-step length relationship.
    Kuo AD
    J Biomech Eng; 2001 Jun; 123(3):264-9. PubMed ID: 11476370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Do mechanical gait parameters explain the higher metabolic cost of walking in obese adolescents?
    Peyrot N; Thivel D; Isacco L; Morin JB; Duche P; Belli A
    J Appl Physiol (1985); 2009 Jun; 106(6):1763-70. PubMed ID: 19246657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical work for step-to-step transitions is a major determinant of the metabolic cost of human walking.
    Donelan JM; Kram R; Kuo AD
    J Exp Biol; 2002 Dec; 205(Pt 23):3717-27. PubMed ID: 12409498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical work performed by individual limbs of transfemoral amputees during step-to-step transitions: Effect of walking velocity.
    Bonnet X; Villa C; Fodé P; Lavaste F; Pillet H
    Proc Inst Mech Eng H; 2014 Jan; 228(1):60-6. PubMed ID: 24288379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The energetic cost of maintaining lateral balance during human running.
    Arellano CJ; Kram R
    J Appl Physiol (1985); 2012 Feb; 112(3):427-34. PubMed ID: 22052870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ageing effects on medio-lateral balance during walking with increased and decreased step width.
    Nagano H; Begg R; Sparrow WA
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():7467-70. PubMed ID: 24111472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coordination of push-off and collision determine the mechanical work of step-to-step transitions when isolated from human walking.
    Soo CH; Donelan JM
    Gait Posture; 2012 Feb; 35(2):292-7. PubMed ID: 22030156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increasing step width reduces the requirements for subtalar joint moments and powers.
    Maharaj JN; Murry LE; Cresswell AG; Lichtwark GA
    J Biomech; 2019 Jul; 92():29-34. PubMed ID: 31201012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical and energetic consequences of rolling foot shape in human walking.
    Adamczyk PG; Kuo AD
    J Exp Biol; 2013 Jul; 216(Pt 14):2722-31. PubMed ID: 23580717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differentiation between solid-ankle cushioned heel and energy storage and return prosthetic foot based on step-to-step transition cost.
    Wezenberg D; Cutti AG; Bruno A; Houdijk H
    J Rehabil Res Dev; 2014; 51(10):1579-90. PubMed ID: 25860285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.