These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 11571147)
1. Differential effects of pH on the pore-forming properties of Bacillus thuringiensis insecticidal crystal toxins. Tran LB; Vachon V; Schwartz JL; Laprade R Appl Environ Microbiol; 2001 Oct; 67(10):4488-94. PubMed ID: 11571147 [TBL] [Abstract][Full Text] [Related]
2. The mode of action of the Bacillus thuringiensis vegetative insecticidal protein Vip3A differs from that of Cry1Ab delta-endotoxin. Lee MK; Walters FS; Hart H; Palekar N; Chen JS Appl Environ Microbiol; 2003 Aug; 69(8):4648-57. PubMed ID: 12902253 [TBL] [Abstract][Full Text] [Related]
3. Mutations in domain I interhelical loops affect the rate of pore formation by the Bacillus thuringiensis Cry1Aa toxin in insect midgut brush border membrane vesicles. Lebel G; Vachon V; Préfontaine G; Girard F; Masson L; Juteau M; Bah A; Larouche G; Vincent C; Laprade R; Schwartz JL Appl Environ Microbiol; 2009 Jun; 75(12):3842-50. PubMed ID: 19376918 [TBL] [Abstract][Full Text] [Related]
4. Analysis of the properties of Bacillus thuringiensis insecticidal toxins using a potential-sensitive fluorescent probe. Kirouac M; Vachon V; Rivest S; Schwartz JL; Laprade R J Membr Biol; 2003 Nov; 196(1):51-9. PubMed ID: 14724756 [TBL] [Abstract][Full Text] [Related]
5. Amino acid and divalent ion permeability of the pores formed by the Bacillus thuringiensis toxins Cry1Aa and Cry1Ac in insect midgut brush border membrane vesicles. Kirouac M; Vachon V; Noël JF; Girard F; Schwartz JL; Laprade R Biochim Biophys Acta; 2002 Apr; 1561(2):171-9. PubMed ID: 11997117 [TBL] [Abstract][Full Text] [Related]
6. Interaction between functional domains of Bacillus thuringiensis insecticidal crystal proteins. Rang C; Vachon V; de Maagd RA; Villalon M; Schwartz JL; Bosch D; Frutos R; Laprade R Appl Environ Microbiol; 1999 Jul; 65(7):2918-25. PubMed ID: 10388684 [TBL] [Abstract][Full Text] [Related]
7. Analysis of the large aqueous pores produced by a Bacillus thuringiensis protein insecticide in Manduca sexta midgut-brush-border-membrane vesicles. Carroll J; Ellar DJ Eur J Biochem; 1997 May; 245(3):797-804. PubMed ID: 9183021 [TBL] [Abstract][Full Text] [Related]
8. Differential role of Manduca sexta aminopeptidase-N and alkaline phosphatase in the mode of action of Cry1Aa, Cry1Ab, and Cry1Ac toxins from Bacillus thuringiensis. Flores-Escobar B; Rodríguez-Magadan H; Bravo A; Soberón M; Gómez I Appl Environ Microbiol; 2013 Aug; 79(15):4543-50. PubMed ID: 23686267 [TBL] [Abstract][Full Text] [Related]
9. Role of interdomain salt bridges in the pore-forming ability of the Bacillus thuringiensis toxins Cry1Aa and Cry1Ac. Coux F; Vachon V; Rang C; Moozar K; Masson L; Royer M; Bes M; Rivest S; Brousseau R; Schwartz JL; Laprade R; Frutos R J Biol Chem; 2001 Sep; 276(38):35546-51. PubMed ID: 11466307 [TBL] [Abstract][Full Text] [Related]
10. Video imaging analysis of the plasma membrane permeabilizing effects of Bacillus thuringiensis insecticidal toxins in Sf9 cells. Villalon M; Vachon V; Brousseau R; Schwartz JL; Laprade R Biochim Biophys Acta; 1998 Jan; 1368(1):27-34. PubMed ID: 9459581 [TBL] [Abstract][Full Text] [Related]
11. The Bacillus thuringiensis Cry1Ac toxin-induced permeability change in Manduca sexta midgut brush border membrane vesicles proceeds by more than one mechanism. Carroll J; Wolfersberger MG; Ellar DJ J Cell Sci; 1997 Dec; 110 ( Pt 24)():3099-104. PubMed ID: 9365280 [TBL] [Abstract][Full Text] [Related]
12. Comparison of the localization of Bacillus thuringiensis Cry1A delta-endotoxins and their binding proteins in larval midgut of tobacco hornworm, Manduca sexta. Chen J; Brown MR; Hua G; Adang MJ Cell Tissue Res; 2005 Jul; 321(1):123-9. PubMed ID: 15902495 [TBL] [Abstract][Full Text] [Related]
13. Altered Glycosylation of 63- and 68-kilodalton microvillar proteins in Heliothis virescens correlates with reduced Cry1 toxin binding, decreased pore formation, and increased resistance to Bacillus thuringiensis Cry1 toxins. Jurat-Fuentes JL; Gould FL; Adang MJ Appl Environ Microbiol; 2002 Nov; 68(11):5711-7. PubMed ID: 12406769 [TBL] [Abstract][Full Text] [Related]
15. Pore formation activity of Cry1Ab toxin from Bacillus thuringiensis in an improved membrane vesicle preparation from Manduca sexta midgut cell microvilli. Bravo A; Miranda R; Gómez I; Soberón M Biochim Biophys Acta; 2002 May; 1562(1-2):63-9. PubMed ID: 11988223 [TBL] [Abstract][Full Text] [Related]
16. N-terminal activation is an essential early step in the mechanism of action of the Bacillus thuringiensis Cry1Ac insecticidal toxin. Bravo A; Sanchez J; Kouskoura T; Crickmore N J Biol Chem; 2002 Jul; 277(27):23985-7. PubMed ID: 12019259 [TBL] [Abstract][Full Text] [Related]
17. Structural changes of the Cry1Ac oligomeric pre-pore from bacillus thuringiensis induced by N-acetylgalactosamine facilitates toxin membrane insertion. Pardo-López L; Gómez I; Rausell C; Sanchez J; Soberón M; Bravo A Biochemistry; 2006 Aug; 45(34):10329-36. PubMed ID: 16922508 [TBL] [Abstract][Full Text] [Related]
18. Atomic force microscopy imaging of Bacillus thuringiensis Cry1 toxins interacting with insect midgut apical membranes. Laflamme E; Badia A; Lafleur M; Schwartz JL; Laprade R J Membr Biol; 2008 Apr; 222(3):127-39. PubMed ID: 18523711 [TBL] [Abstract][Full Text] [Related]
19. Cross-resistance of the diamondback moth indicates altered interactions with domain II of Bacillus thuringiensis toxins. Tabashnik BE; Malvar T; Liu YB; Finson N; Borthakur D; Shin BS; Park SH; Masson L; de Maagd RA; Bosch D Appl Environ Microbiol; 1996 Aug; 62(8):2839-44. PubMed ID: 8702276 [TBL] [Abstract][Full Text] [Related]
20. An analysis of Bacillus thuringiensis delta-endotoxin action on insect-midgut-membrane permeability using a light-scattering assay. Carroll J; Ellar DJ Eur J Biochem; 1993 Jun; 214(3):771-8. PubMed ID: 8319686 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]