These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 115712)

  • 1. A competition time-course method for following enzymic reactions applied to the hydrolysis of acetamide catalysed by an aliphatic amidase.
    Hollaway MR; Ticho T
    FEBS Lett; 1979 Oct; 106(1):185-8. PubMed ID: 115712
    [No Abstract]   [Full Text] [Related]  

  • 2. Kinetic mechanism of the aliphatic amidase from Pseudomonas aeruginosa.
    Woods MJ; Findlater JD; Orsi BA
    Biochim Biophys Acta; 1979 Mar; 567(1):225-37. PubMed ID: 110350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chloroacetone as an active-site-directed inhibitor of the aliphatic amidase from Pseudomonas aeruginosa.
    Hollaway MR; Clarke PH; Ticho T
    Biochem J; 1980 Dec; 191(3):811-26. PubMed ID: 6793036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring enzymatic activity of a recombinant amidase using Fourier transform infrared spectroscopy.
    Pacheco R; Serralheiro ML; Karmali A; Haris PI
    Anal Biochem; 2003 Nov; 322(2):208-14. PubMed ID: 14596829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arg-188 and Trp-144 are implicated in the binding of urea and acetamide to the active site of the amidase from Pseudomonas aeruginosa.
    Tata R; Marsh P; Brown PR
    Biochim Biophys Acta; 1994 Mar; 1205(1):139-45. PubMed ID: 8142478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of Fourier transform infrared spectroscopy for monitoring hydrolysis and synthesis reactions catalyzed by a recombinant amidase.
    Pacheco R; Karmali A; Serralheiro ML; Haris PI
    Anal Biochem; 2005 Nov; 346(1):49-58. PubMed ID: 16185648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic properties of wild-type and altered recombinant amidases by the use of ion-selective electrode assay method.
    Martins S; Karmali A; Serralheiro ML
    Anal Biochem; 2006 Aug; 355(2):232-9. PubMed ID: 16792995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic analysis of amidase mutants of Pseudomonas aeruginosa.
    Betz JL; Brown JE; Clarke PH; Day M
    Genet Res; 1974 Jun; 23(3):335-59. PubMed ID: 4215693
    [No Abstract]   [Full Text] [Related]  

  • 9. Inhibition of the aliphatic amidase from Pseudomonas aeruginosa by urea and related compounds.
    Gregoriou M; Brown PR
    Eur J Biochem; 1979 May; 96(1):101-8. PubMed ID: 110589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catabolite repression of Pseudomonas aeruginosa amidase: the effect of carbon source on amidase synthesis.
    Smyth PF; Clarke PH
    J Gen Microbiol; 1975 Sep; 90(1):81-90. PubMed ID: 170365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-step affinity purification of amidase from mutant strains of Pseudomonas aeruginosa.
    Domingos A; Karmali A; Brown PR
    Biochimie; 1989; 71(11-12):1179-84. PubMed ID: 2517478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The subunit structure of the aliphatic amidase from Pseudomonas aeruginosa.
    Brown PR; Smyth MJ; Clarke PH; Rosemeyer MA
    Eur J Biochem; 1973 Apr; 34(1):177-87. PubMed ID: 4633800
    [No Abstract]   [Full Text] [Related]  

  • 13. Kinetic parameters from progress curves of competing substrates. Application to beta-lactamases.
    Waley SG
    Biochem J; 1983 May; 211(2):511-3. PubMed ID: 6409097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering of Pseudomonas aeruginosa lipase by directed evolution for enhanced amidase activity: mechanistic implication for amide hydrolysis by serine hydrolases.
    Nakagawa Y; Hasegawa A; Hiratake J; Sakata K
    Protein Eng Des Sel; 2007 Jul; 20(7):339-46. PubMed ID: 17616559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical and immunological comparison of aliphatic amidases produced by Pseudomonas species.
    Clarke PH
    J Gen Microbiol; 1972 Jul; 71(2):241-57. PubMed ID: 4625925
    [No Abstract]   [Full Text] [Related]  

  • 16. Positive regulation of amidase synthesis in Pseudomonas aeruginosa.
    Farin F; Clarke PH
    J Bacteriol; 1978 Aug; 135(2):379-92. PubMed ID: 98516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Butyramide-utilizing mutants of Pseudomonas aeruginosa 8602 which produce an amidase with altered substrate specificity.
    Brown JE; Brown PR; Clarke PH
    J Gen Microbiol; 1969 Aug; 57(2):273-85. PubMed ID: 4981920
    [No Abstract]   [Full Text] [Related]  

  • 18. Substitutions of Thr-103-Ile and Trp-138-Gly in amidase from Pseudomonas aeruginosa are responsible for altered kinetic properties and enzyme instability.
    Karmali A; Pacheco R; Tata R; Brown P
    Mol Biotechnol; 2001 Mar; 17(3):201-12. PubMed ID: 11434308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective evolution of phenylacetamide-utilizing strains of Pseudomonas aeruginosa.
    Betz JL; Clarke PH
    J Gen Microbiol; 1972 Nov; 73(1):161-74. PubMed ID: 4631783
    [No Abstract]   [Full Text] [Related]  

  • 20. Regulatory properties of an inducible aliphatic amidase in a thermophilic bacillus.
    Thalenfeld B; Grossowicz N
    J Gen Microbiol; 1976 May; 94(1):131-41. PubMed ID: 932686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.