These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 11571204)
41. Improving the acidic stability of a methyl parathion hydrolase by changing basic residues to acidic residues. Huang L; Wang P; Tian J; Jiang H; Wu N; Yang P; Yao B; Fan Y Biotechnol Lett; 2012 Jun; 34(6):1115-21. PubMed ID: 22350335 [TBL] [Abstract][Full Text] [Related]
42. Burkholderia jiangsuensis sp. nov., a methyl parathion degrading bacterium, isolated from methyl parathion contaminated soil. Liu XY; Li CX; Luo XJ; Lai QL; Xu JH Int J Syst Evol Microbiol; 2014 Sep; 64(Pt 9):3247-3253. PubMed ID: 24981326 [TBL] [Abstract][Full Text] [Related]
43. Functional assembly of a microbial consortium with autofluorescent and mineralizing activity for the biodegradation of organophosphates. Zhang H; Yang C; Li C; Li L; Zhao Q; Qiao C J Agric Food Chem; 2008 Sep; 56(17):7897-902. PubMed ID: 18693742 [TBL] [Abstract][Full Text] [Related]
44. Altering the substrate specificity of methyl parathion hydrolase with directed evolution. Ng TK; Gahan LR; Schenk G; Ollis DL Arch Biochem Biophys; 2015 May; 573():59-68. PubMed ID: 25797441 [TBL] [Abstract][Full Text] [Related]
45. Biodegradation of methyl parathion and p-nitrophenol by a newly isolated Agrobacterium sp. strain Yw12. Wang S; Zhang C; Yan Y Biodegradation; 2012 Feb; 23(1):107-16. PubMed ID: 21744158 [TBL] [Abstract][Full Text] [Related]
46. Enhancing methyl parathion degradation by the immobilization of Burkholderia sp. isolated from agricultural soils. Fernández-López MG; Popoca-Ursino C; Sánchez-Salinas E; Tinoco-Valencia R; Folch-Mallol JL; Dantán-González E; Laura Ortiz-Hernández M Microbiologyopen; 2017 Oct; 6(5):. PubMed ID: 28714263 [TBL] [Abstract][Full Text] [Related]
47. Overexpression of methyl parathion hydrolase and its application in detoxification of organophosphates. Yang J; Yang C; Jiang H; Qiao C Biodegradation; 2008 Nov; 19(6):831-9. PubMed ID: 18373236 [TBL] [Abstract][Full Text] [Related]
48. Improving the thermostability of methyl parathion hydrolase from Ochrobactrum sp. M231 using a computationally aided method. Tian J; Wang P; Huang L; Chu X; Wu N; Fan Y Appl Microbiol Biotechnol; 2013 Apr; 97(7):2997-3006. PubMed ID: 23001009 [TBL] [Abstract][Full Text] [Related]
49. Characterization of methyl parathion degradation by a Burkholderia zhejiangensis strain, CEIB S4-3, isolated from agricultural soils. Popoca-Ursino EC; Martínez-Ocampo F; Dantán-González E; Sánchez-Salinas E; Ortiz-Hernández ML Biodegradation; 2017 Dec; 28(5-6):351-367. PubMed ID: 28698922 [TBL] [Abstract][Full Text] [Related]
50. Over-expression of parathion hydrolase of Flavobacterium balustinum in E. coli: purification and characterization of His-tagged parathion hydrolase. Somara S; Manavathi B; Tebbe CC; Siddavatam D Indian J Biochem Biophys; 2002 Apr; 39(2):82-6. PubMed ID: 22896893 [TBL] [Abstract][Full Text] [Related]
51. Reductive transformation of parathion and methyl parathion by Bacillus sp. Yang C; Dong M; Yuan Y; Huang Y; Guo X; Qiao C Biotechnol Lett; 2007 Mar; 29(3):487-93. PubMed ID: 17225067 [TBL] [Abstract][Full Text] [Related]
52. Degradation of methyl parathion by Pseudomonas putida. Rani NL; Lalithakumari D Can J Microbiol; 1994 Dec; 40(12):1000-6. PubMed ID: 7704828 [TBL] [Abstract][Full Text] [Related]
53. [Isolation, degradation and phylogenetic analysis of methylparathion degradative strain X4]. Xie XP; Yan YC; Liu PP Wei Sheng Wu Xue Bao; 2006 Dec; 46(6):979-83. PubMed ID: 17302165 [TBL] [Abstract][Full Text] [Related]
54. Burkholderia zhejiangensis sp. nov., a methyl-parathion-degrading bacterium isolated from a wastewater-treatment system. Lu P; Zheng LQ; Sun JJ; Liu HM; Li SP; Hong Q; Li WJ Int J Syst Evol Microbiol; 2012 Jun; 62(Pt 6):1337-1341. PubMed ID: 21828021 [TBL] [Abstract][Full Text] [Related]
55. [Construction of a versatile degrading bacteria Pseudomonas putida KT2440-DOP and its degrading characteristics]. Gu LF; He J; Huang X; Jia KZ; Li SP Wei Sheng Wu Xue Bao; 2006 Oct; 46(5):763-6. PubMed ID: 17172025 [TBL] [Abstract][Full Text] [Related]
56. Bioremediation of pesticide contaminated water using an organophosphate degrading enzyme immobilized on nonwoven polyester textiles. Gao Y; Truong YB; Cacioli P; Butler P; Kyratzis IL Enzyme Microb Technol; 2014 Jan; 54():38-44. PubMed ID: 24267566 [TBL] [Abstract][Full Text] [Related]
57. Molecular binding of different classes of organophosphates to methyl parathion hydrolase from Ochrobactrum species. Bhat N; Nutho B; Hanpaibool C; Hadsadee S; Vangnai A; Rungrotmongkol T Proteins; 2024 Jan; 92(1):96-105. PubMed ID: 37646471 [TBL] [Abstract][Full Text] [Related]
58. Immobilization of organophosphate hydrolase on biocompatible gelatin pads and its use in removal of organophosphate compounds and nerve agents. Kanugula AK; Repalle ER; Pandey JP; Sripad G; Mitra CK; Dubey DK; Siddavattam D Indian J Biochem Biophys; 2011 Feb; 48(1):29-34. PubMed ID: 21469599 [TBL] [Abstract][Full Text] [Related]
59. Isolation of monocrotophos-degrading strain Sphingobiumsp. YW16 and cloning of its TnopdA. Sun L; Liu H; Gao X; Chen W; Huang K; Zhang S Environ Sci Pollut Res Int; 2018 Feb; 25(5):4942-4950. PubMed ID: 29204940 [TBL] [Abstract][Full Text] [Related]
60. Removal of methyl parathion from artificial off-gas using a bioreactor containing a constructed microbial consortium. Li L; Yang C; Lan W; Xie S; Qiao C; Liu J Environ Sci Technol; 2008 Mar; 42(6):2136-41. PubMed ID: 18409649 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]