These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 11571615)

  • 61. Biological wastewater treatment by a bioreactor with repeated coupling of aerobes and anaerobes aiming at on-site reduction of excess sludge.
    Yu A; Feng Q; Liu Z; Zhou Y; Xing XH
    Water Sci Technol; 2006; 53(9):71-7. PubMed ID: 16841729
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Effect of pH change on the performance and microbial community of enhanced biological phosphate removal process.
    Zhang T; Liu Y; Fang HH
    Biotechnol Bioeng; 2005 Oct; 92(2):173-82. PubMed ID: 15962340
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Role of Cations in Accumulation and Release of Phosphate by Acinetobacter Strain 210A.
    van Groenestijn JW; Vlekke GJ; Anink DM; Deinema MH; Zehnder AJ
    Appl Environ Microbiol; 1988 Dec; 54(12):2894-901. PubMed ID: 16347788
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Anaerobic-aerobic sequencing bioreactors improve energy efficiency for treatment of personal care product industry wastes.
    Ahammad SZ; Bereslawski JL; Dolfing J; Mota C; Graham DW
    Bioresour Technol; 2013 Jul; 139():73-9. PubMed ID: 23639409
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Denitrifying phosphorus removal and impact of nitrite accumulation on phosphorus removal in a continuous anaerobic-anoxic-aerobic (A2O) process treating domestic wastewater.
    Zeng W; Li L; Yang YY; Wang XD; Peng YZ
    Enzyme Microb Technol; 2011 Feb; 48(2):134-42. PubMed ID: 22112822
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Nutrient removal using algal-bacterial mixed culture.
    Ashok V; Shriwastav A; Bose P
    Appl Biochem Biotechnol; 2014 Dec; 174(8):2827-38. PubMed ID: 25293638
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Substrate specificity of the two phosphate transport systems of Acinetobacter johnsonii 210A in relation to phosphate speciation in its aquatic environment.
    van Veen HW; Abee T; Kortstee GJ; Konings WN; Zehnder AJ
    J Biol Chem; 1994 Jun; 269(23):16212-6. PubMed ID: 8206923
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Stoichiometry and kinetics of acetate uptake under anaerobic conditions by an enriched culture of phosphorus-accumulating organisms at different pHs.
    Filipe CD; Daigger GT; Grady CP
    Biotechnol Bioeng; 2001; 76(1):32-43. PubMed ID: 11400104
    [TBL] [Abstract][Full Text] [Related]  

  • 69. On-line removal of volatile fatty acids from CELSS anaerobic bioreactor via nanofiltration.
    Colon G; Sager JC
    Life Support Biosph Sci; 2001; 7(4):291-9. PubMed ID: 11676457
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Cadmium removal by Euglena gracilis is enhanced under anaerobic growth conditions.
    Santiago-Martínez MG; Lira-Silva E; Encalada R; Pineda E; Gallardo-Pérez JC; Zepeda-Rodriguez A; Moreno-Sánchez R; Saavedra E; Jasso-Chávez R
    J Hazard Mater; 2015 May; 288():104-12. PubMed ID: 25698571
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Are compatible solutes compatible with biological treatment of saline wastewater? Batch and continuous studies using submerged anaerobic membrane bioreactors (SAMBRs).
    Vyrides I; Santos H; Mingote A; Ray MJ; Stuckey DC
    Environ Sci Technol; 2010 Oct; 44(19):7437-42. PubMed ID: 20831155
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Novel application of oxygen-transferring membranes to improve anaerobic wastewater treatment.
    Kappell AS; Semmens MJ; Novak PJ; LaPara TM
    Biotechnol Bioeng; 2005 Feb; 89(4):373-80. PubMed ID: 15643630
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Biological phosphorus removal in wastewater treatment.
    Timmerman MW
    Microbiol Sci; 1984 Sep; 1(6):149-52. PubMed ID: 6444138
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Biological treatment of high-pH and high-concentration black liquor of cotton pulp by an immediate aerobic-anaerobic-aerobic process.
    Lihong M; Furong L; Jinli W
    Water Sci Technol; 2009; 60(12):3275-84. PubMed ID: 19955653
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Phosphate uptake by immobilized Acinetobacter calcoaceticus cells in a full scale activated sludge plant.
    Muyima NY; Cloete TE
    J Ind Microbiol; 1995 Jul; 15(1):19-24. PubMed ID: 7662295
    [TBL] [Abstract][Full Text] [Related]  

  • 76. [Formation of the phosphorus removal granular sludge and phosphorus removal characteristics of the anaerobic/oxic and anaerobic/anoxic/oxic granular sludge process in SBR].
    Liu XY; Jiang YH; Guo C; Peng DC
    Huan Jing Ke Xue; 2009 Sep; 30(9):2655-60. PubMed ID: 19927821
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Comparison of semi-aerobic and anaerobic degradation of refuse with recirculation after leachate treatment by aged refuse bioreactor.
    Sun Y; Sun X; Zhao Y
    Waste Manag; 2011 Jun; 31(6):1202-9. PubMed ID: 21339061
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Biosorption of lead(II), cadmium(II), copper(II) and nickel(II) by anaerobic granular biomass.
    Hawari AH; Mulligan CN
    Bioresour Technol; 2006 Mar; 97(4):692-700. PubMed ID: 15935654
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Nutrient removal, microbial community and sludge settlement in anaerobic/aerobic sequencing batch reactors without enhanced biological phosphorus removal.
    Wu G; Rodgers M
    Water Sci Technol; 2010; 61(10):2433-41. PubMed ID: 20453315
    [TBL] [Abstract][Full Text] [Related]  

  • 80. [Comparison study on phosphorus removal between single-stage oxic process and anaerobic/aerobic process].
    Yang F; Wang DB; Li XM; Yang Q; Deng Y; Luo K; Zou ZJ; Zeng TJ; Deng P
    Huan Jing Ke Xue; 2011 Nov; 32(11):3379-85. PubMed ID: 22295638
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.