BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 11571648)

  • 1. Functional impact of concomitant versus alternative defects in the Chk2-p53 tumour suppressor pathway.
    Falck J; Lukas C; Protopopova M; Lukas J; Selivanova G; Bartek J
    Oncogene; 2001 Sep; 20(39):5503-10. PubMed ID: 11571648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MDC1 is coupled to activated CHK2 in mammalian DNA damage response pathways.
    Lou Z; Minter-Dykhouse K; Wu X; Chen J
    Nature; 2003 Feb; 421(6926):957-61. PubMed ID: 12607004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Cell cycle regulation after exposure to ionizing radiation].
    Teyssier F; Bay JO; Dionet C; Verrelle P
    Bull Cancer; 1999 Apr; 86(4):345-57. PubMed ID: 10341340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concomitant inactivation of p53 and Chk2 in breast cancer.
    Sullivan A; Yuille M; Repellin C; Reddy A; Reelfs O; Bell A; Dunne B; Gusterson BA; Osin P; Farrell PJ; Yulug I; Evans A; Ozcelik T; Gasco M; Crook T
    Oncogene; 2002 Feb; 21(9):1316-24. PubMed ID: 11857075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aberrant regulation and function of wild-type p53 in radioresistant melanoma cells.
    Satyamoorthy K; Chehab NH; Waterman MJ; Lien MC; El-Deiry WS; Herlyn M; Halazonetis TD
    Cell Growth Differ; 2000 Sep; 11(9):467-74. PubMed ID: 11007451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radioprotection by hymenialdisine-derived checkpoint kinase 2 inhibitors.
    Nguyen TN; Saleem RS; Luderer MJ; Hovde S; Henry RW; Tepe JJ
    ACS Chem Biol; 2012 Jan; 7(1):172-84. PubMed ID: 22004065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CHK2 kinase--a busy messenger.
    Bartek J; Falck J; Lukas J
    Nat Rev Mol Cell Biol; 2001 Dec; 2(12):877-86. PubMed ID: 11733767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aberrations of the Chk2 tumour suppressor in advanced urinary bladder cancer.
    Bartkova J; Guldberg P; Grønbaek K; Koed K; Primdahl H; Møller K; Lukas J; Ørntoft TF; Bartek J
    Oncogene; 2004 Nov; 23(52):8545-51. PubMed ID: 15361851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Destabilization of CHK2 by a missense mutation associated with Li-Fraumeni Syndrome.
    Lee SB; Kim SH; Bell DW; Wahrer DC; Schiripo TA; Jorczak MM; Sgroi DC; Garber JE; Li FP; Nichols KE; Varley JM; Godwin AK; Shannon KM; Harlow E; Haber DA
    Cancer Res; 2001 Nov; 61(22):8062-7. PubMed ID: 11719428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissociation between cell cycle arrest and apoptosis can occur in Li-Fraumeni cells heterozygous for p53 gene mutations.
    Delia D; Goi K; Mizutani S; Yamada T; Aiello A; Fontanella E; Lamorte G; Iwata S; Ishioka C; Krajewski S; Reed JC; Pierotti MA
    Oncogene; 1997 May; 14(18):2137-47. PubMed ID: 9174049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Priming phosphorylation of Chk2 by polo-like kinase 3 (Plk3) mediates its full activation by ATM and a downstream checkpoint in response to DNA damage.
    Bahassi el M; Myer DL; McKenney RJ; Hennigan RF; Stambrook PJ
    Mutat Res; 2006 Apr; 596(1-2):166-76. PubMed ID: 16481012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. p53, CHK2, and CHK1 genes in Finnish families with Li-Fraumeni syndrome: further evidence of CHK2 in inherited cancer predisposition.
    Vahteristo P; Tamminen A; Karvinen P; Eerola H; Eklund C; Aaltonen LA; Blomqvist C; Aittomäki K; Nevanlinna H
    Cancer Res; 2001 Aug; 61(15):5718-22. PubMed ID: 11479205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional analysis of the p53 pathway in response to ionizing radiation in uveal melanoma.
    Sun Y; Tran BN; Worley LA; Delston RB; Harbour JW
    Invest Ophthalmol Vis Sci; 2005 May; 46(5):1561-4. PubMed ID: 15851551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Chk2 protein kinase.
    Ahn J; Urist M; Prives C
    DNA Repair (Amst); 2004; 3(8-9):1039-47. PubMed ID: 15279791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cell cycle checkpoint kinase Chk2 is a negative regulator of mitotic catastrophe.
    Castedo M; Perfettini JL; Roumier T; Yakushijin K; Horne D; Medema R; Kroemer G
    Oncogene; 2004 May; 23(25):4353-61. PubMed ID: 15048074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. E2F1 uses the ATM signaling pathway to induce p53 and Chk2 phosphorylation and apoptosis.
    Powers JT; Hong S; Mayhew CN; Rogers PM; Knudsen ES; Johnson DG
    Mol Cancer Res; 2004 Apr; 2(4):203-14. PubMed ID: 15140942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of the DNA damage checkpoint pathway in intraductal papillary mucinous neoplasms of the pancreas.
    Miyasaka Y; Nagai E; Yamaguchi H; Fujii K; Inoue T; Ohuchida K; Yamada T; Mizumoto K; Tanaka M; Tsuneyoshi M
    Clin Cancer Res; 2007 Aug; 13(15 Pt 1):4371-7. PubMed ID: 17671118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced expression and impaired kinase activity of a Chk2 mutant identified in human lung cancer.
    Matsuoka S; Nakagawa T; Masuda A; Haruki N; Elledge SJ; Takahashi T
    Cancer Res; 2001 Jul; 61(14):5362-5. PubMed ID: 11454675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chk2 regulates transcription-independent p53-mediated apoptosis in response to DNA damage.
    Chen C; Shimizu S; Tsujimoto Y; Motoyama N
    Biochem Biophys Res Commun; 2005 Jul; 333(2):427-31. PubMed ID: 15950944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis.
    Bartkova J; Horejsí Z; Koed K; Krämer A; Tort F; Zieger K; Guldberg P; Sehested M; Nesland JM; Lukas C; Ørntoft T; Lukas J; Bartek J
    Nature; 2005 Apr; 434(7035):864-70. PubMed ID: 15829956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.