These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 115721)

  • 1. Cold-induced uncoupling of energy transfer between phycobilins and chlorophyll in Anacystis nidulans: antagonistic effects of monovalent and divalent cations, and of high and low pH.
    Schreiber U
    FEBS Lett; 1979 Nov; 107(1):4-9. PubMed ID: 115721
    [No Abstract]   [Full Text] [Related]  

  • 2. Changes in phycocyanin-carotenoid association during nitrate starvation of Anacystis nidulans.
    Szalontai B; Csatorday K
    Biochem Biophys Res Commun; 1979 Jun; 88(4):1294-200. PubMed ID: 113004
    [No Abstract]   [Full Text] [Related]  

  • 3. Reversible uncoupling of energy transfer between phycobilins and chlorophyll in Anacystis nidulans: light stimulation of cold-induced phycobilisome detachment.
    Schreiber U
    Biochim Biophys Acta; 1980 Jul; 591(2):361-71. PubMed ID: 6772212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Low-temperature delayed fluorescence of phycobilins in red algae].
    KrasnovskiÄ­ AA; Kovalev IuV
    Biofizika; 1981; 26(4):724-5. PubMed ID: 7284460
    [No Abstract]   [Full Text] [Related]  

  • 5. Fluorescence from sensitizing phycobilin chromophores in the blue-green alga Anacystis nidulans.
    Csatorday K
    Biochim Biophys Acta; 1978 Nov; 504(2):341-3. PubMed ID: 102340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of the distribution of chlorophyll and phycobilin-absorbed excitation energy in cyanobacteria. A structure-based model for the light state transition.
    McConnell MD; Koop R; Vasil'ev S; Bruce D
    Plant Physiol; 2002 Nov; 130(3):1201-12. PubMed ID: 12427987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors affecting energy transfer from phycobilisomes to thylakoids in Anacystis nidulans.
    Harnischfeger G; Codd GA
    Biochim Biophys Acta; 1978 Jun; 502(3):507-13. PubMed ID: 418809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthesis of phycobilins. Formation of the chromophore of phytochrome, phycocyanin and phycoerythrin.
    Brown SB; Houghton JD; Vernon DI
    J Photochem Photobiol B; 1990 Apr; 5(1):3-23. PubMed ID: 2111391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The biosynthesis of the chromophore of phycocyanin. Pathway of reduction of biliverdin to phycocyanobilin.
    Brown SB; Holroyd JA; Vernon DI; Shim YK; Smith KM
    Biochem J; 1989 Jul; 261(1):259-63. PubMed ID: 2505754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light-induced changes in the fluorescence yield of chlorophyll a in Anacystis nidulans. I. Relationship of slow fluorescence changes with structural changes.
    Mohanty P; Govindjee
    Biochim Biophys Acta; 1973 Apr; 305(1):95-104. PubMed ID: 4198185
    [No Abstract]   [Full Text] [Related]  

  • 11. Structure and molecular organization of the photosynthetic accessory pigments of cyanobacteria and red algae.
    Glazer AN
    Mol Cell Biochem; 1977 Dec; 18(2-3):125-40. PubMed ID: 415227
    [No Abstract]   [Full Text] [Related]  

  • 12. Picosecond fluorescence of cryptomonad biliproteins. Effects of excitation intensity and the fluorescence decay times of phycocyanin 612, phycocyanin 645, and phycoerythrin 545.
    Guard-Friar D; MacColl R; Berns DS; Wittmershaus B; Knox RS
    Biophys J; 1985 Jun; 47(6):787-93. PubMed ID: 3926017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro attachment of bilins to apophycocyanin. I. Specific covalent adduct formation at cysteinyl residues involved in phycocyanobilin binding in C-phycocyanin.
    Arciero DM; Bryant DA; Glazer AN
    J Biol Chem; 1988 Dec; 263(34):18343-9. PubMed ID: 3142876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Pigment degradation in Synechocystis aquatilis under nitrogen starvation with varying illumination].
    Shenderova LV; Venediktov PS
    Mikrobiologiia; 1980; 49(6):906-10. PubMed ID: 6782435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of bilirubin oxidase for probing chromophore topography in tetrapyrrole proteins.
    Singh BR; Choi J; Kwon TI; Song PS
    J Biochem Biophys Methods; 1989 Mar; 18(2):135-47. PubMed ID: 2745929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Picosecond time-resolved energy transfer in Porphyridium cruentum. Part I. In the intact alga.
    Porter G; Tredwell CJ; Searle GF; Barber J
    Biochim Biophys Acta; 1978 Feb; 501(2):232-45. PubMed ID: 620014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of carbon-containing compounds on the chromatic characteristics of Anacystis nidulans blue-green algae].
    Iunusova LS; Mukhina OV; Gusev MV
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1973; 10(118):107-10. PubMed ID: 4201591
    [No Abstract]   [Full Text] [Related]  

  • 18. Phycobiliprotein-bilin linkage diversity. I. Structural studies on A- and D-ring-linked phycocyanobilins.
    Bishop JE; Lagarias JC; Nagy JO; Schoenleber RW; Rapoport H; Klotz AV; Glazer AN
    J Biol Chem; 1986 May; 261(15):6790-6. PubMed ID: 3084489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Picosecond energy transfer in Porphyridium cruentum and Anacystis nidulans.
    Brody SS; Treadwell C; Barber J
    Biophys J; 1981 Jun; 34(3):439-49. PubMed ID: 6788106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transfer of the excitation energy in Anacystis nidulans grown to obtain different pigment ratios.
    Ghosh AK; Govindjee
    Biophys J; 1966 Sep; 6(5):611-9. PubMed ID: 5970565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.