These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 11572366)

  • 1. Effects of oscillation of a mechanical hemilarynx model on mean transglottal pressures and flows.
    Alipour F; Scherer RC
    J Acoust Soc Am; 2001 Sep; 110(3 Pt 1):1562-9. PubMed ID: 11572366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An experimental analysis of the pressures and flows within a driven mechanical model of phonation.
    Kucinschi BR; Scherer RC; Dewitt KJ; Ng TT
    J Acoust Soc Am; 2006 May; 119(5 Pt 1):3011-21. PubMed ID: 16708957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pressure and velocity profiles in a static mechanical hemilarynx model.
    Alipour F; Scherer RC
    J Acoust Soc Am; 2002 Dec; 112(6):2996-3003. PubMed ID: 12509021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pressure distributions in a static physical model of the hemilarynx: measurements and computations.
    Fulcher LP; Scherer RC; De Witt KJ; Thapa P; Bo Y; Kucinschi BR
    J Voice; 2010 Jan; 24(1):2-20. PubMed ID: 18538986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intraglottal Pressure: A Comparison Between Male and Female Larynxes.
    Li S; Scherer RC; Wan M; Wang S; Song B
    J Voice; 2020 Nov; 34(6):813-822. PubMed ID: 31311664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Vertical Glottal Duct Length on Intraglottal Pressures and Phonation Threshold Pressure in the Uniform Glottis.
    Li S; Scherer RC; Fulcher LP; Wang X; Qiu L; Wan M; Wang S
    J Voice; 2018 Jan; 32(1):8-22. PubMed ID: 28599995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic glottal pressures in an excised hemilarynx model.
    Alipour F; Scherer RC
    J Voice; 2000 Dec; 14(4):443-54. PubMed ID: 11130103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytic representation of volume flow as a function of geometry and pressure in a static physical model of the glottis.
    Fulcher LP; Scherer RC; Zhai G; Zhu Z
    J Voice; 2006 Dec; 20(4):489-512. PubMed ID: 16434169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intraglottal pressure profiles for a symmetric and oblique glottis with a divergence angle of 10 degrees.
    Scherer RC; Shinwari D; De Witt KJ; Zhang C; Kucinschi BR; Afjeh AA
    J Acoust Soc Am; 2001 Apr; 109(4):1616-30. PubMed ID: 11325132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aerodynamic profiles of a hemilarynx with a vocal tract.
    Alipour F; Montequin D; Tayama N
    Ann Otol Rhinol Laryngol; 2001 Jun; 110(6):550-5. PubMed ID: 11407846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow separation in a computational oscillating vocal fold model.
    Alipour F; Scherer RC
    J Acoust Soc Am; 2004 Sep; 116(3):1710-9. PubMed ID: 15478438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow visualization and pressure distributions in a model of the glottis with a symmetric and oblique divergent angle of 10 degrees.
    Shinwari D; Scherer RC; DeWitt KJ; Afjeh AA
    J Acoust Soc Am; 2003 Jan; 113(1):487-97. PubMed ID: 12558286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling coupled aerodynamics and vocal fold dynamics using immersed boundary methods.
    Duncan C; Zhai G; Scherer R
    J Acoust Soc Am; 2006 Nov; 120(5 Pt 1):2859-71. PubMed ID: 17139744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of glottal angle on intraglottal pressure.
    Li S; Scherer RC; Wan M; Wang S; Wu H
    J Acoust Soc Am; 2006 Jan; 119(1):539-48. PubMed ID: 16454307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A methodological study of hemilaryngeal phonation.
    Jiang JJ; Titze IR
    Laryngoscope; 1993 Aug; 103(8):872-82. PubMed ID: 8361290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Phase relationship between dynamics of the subglottic pressure and oscillatory movement of the vocal folds. I. Sustained phonation].
    Dejonckere P; Lebacq J
    Arch Int Physiol Biochim; 1980 Oct; 88(4):333-41. PubMed ID: 6163402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intraglottal pressures in a three-dimensional model with a non-rectangular glottal shape.
    Scherer RC; Torkaman S; Kucinschi BR; Afjeh AA
    J Acoust Soc Am; 2010 Aug; 128(2):828-38. PubMed ID: 20707452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intraglottal velocity and pressure measurements in a hemilarynx model.
    Oren L; Gutmark E; Khosla S
    J Acoust Soc Am; 2015 Feb; 137(2):935-43. PubMed ID: 25698025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Instantaneous orifice discharge coefficient of a physical, driven model of the human larynx.
    Park JB; Mongeau L
    J Acoust Soc Am; 2007 Jan; 121(1):442-55. PubMed ID: 17297799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of the ventricular folds in a synthetic larynx model.
    Kniesburges S; Birk V; Lodermeyer A; Schützenberger A; Bohr C; Becker S
    J Biomech; 2017 Apr; 55():128-133. PubMed ID: 28285747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.