These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 11572373)

  • 1. A probabilistic union model with automatic order selection for noisy speech recognition.
    Jancovic P; Ming J
    J Acoust Soc Am; 2001 Sep; 110(3 Pt 1):1641-8. PubMed ID: 11572373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust audio-visual speech recognition under noisy audio-video conditions.
    Stewart D; Seymour R; Pass A; Ming J
    IEEE Trans Cybern; 2014 Feb; 44(2):175-84. PubMed ID: 23757540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An effective cluster-based model for robust speech detection and speech recognition in noisy environments.
    Górriz JM; Ramírez J; Segura JC; Puntonet CG
    J Acoust Soc Am; 2006 Jul; 120(1):470-81. PubMed ID: 16875243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic speech recognition using a predictive echo state network classifier.
    Skowronski MD; Harris JG
    Neural Netw; 2007 Apr; 20(3):414-23. PubMed ID: 17556115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-order hidden Markov model for piecewise linear processes and applications to speech recognition.
    Lee LM; Jean FR
    J Acoust Soc Am; 2016 Aug; 140(2):EL204. PubMed ID: 27586781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Auditory-model based robust feature selection for speech recognition.
    Koniaris C; Kuropatwinski M; Kleijn WB
    J Acoust Soc Am; 2010 Feb; 127(2):EL73-9. PubMed ID: 20136182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear spectro-temporal features based on a cochlear model for automatic speech recognition in a noisy situation.
    Choi YS; Lee SY
    Neural Netw; 2013 Sep; 45():62-9. PubMed ID: 23558292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploiting independent filter bandwidth of human factor cepstral coefficients in automatic speech recognition.
    Skowronski MD; Harris JG
    J Acoust Soc Am; 2004 Sep; 116(3):1774-80. PubMed ID: 15478444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noise-robust speech recognition through auditory feature detection and spike sequence decoding.
    Schafer PB; Jin DZ
    Neural Comput; 2014 Mar; 26(3):523-56. PubMed ID: 24320849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining directional microphone and single-channel noise reduction algorithms: a clinical evaluation in difficult listening conditions with cochlear implant users.
    Hersbach AA; Arora K; Mauger SJ; Dawson PW
    Ear Hear; 2012; 33(4):e13-23. PubMed ID: 22555182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the sparse coding shrinkage noise reduction algorithm in normal hearing and hearing impaired listeners.
    Sang J; Hu H; Zheng C; Li G; Lutman ME; Bleeck S
    Hear Res; 2014 Apr; 310():36-47. PubMed ID: 24495441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel voice sensor for the detection of speech signals.
    Wang KC
    Sensors (Basel); 2013 Dec; 13(12):16533-50. PubMed ID: 24316566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic formant tracking of noisy speech using temporal analysis on outputs from a nonlinear cochlear model.
    Deng L; Kheirallah I
    IEEE Trans Biomed Eng; 1993 May; 40(5):456-67. PubMed ID: 8225334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [An improved spectral subtraction algorithm applied to speech enhancement in the cochlear implant].
    Sun J; Tian L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Feb; 27(1):188-92. PubMed ID: 20337051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A spectral/temporal method for robust fundamental frequency tracking.
    Zahorian SA; Hu H
    J Acoust Soc Am; 2008 Jun; 123(6):4559-71. PubMed ID: 18537404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computer model of auditory efferent suppression: implications for the recognition of speech in noise.
    Brown GJ; Ferry RT; Meddis R
    J Acoust Soc Am; 2010 Feb; 127(2):943-54. PubMed ID: 20136217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sparse Nonnegative Matrix Factorization Strategy for Cochlear Implants.
    Hu H; Lutman ME; Ewert SD; Li G; Bleeck S
    Trends Hear; 2015 Dec; 19():. PubMed ID: 26721919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noise robust speech rate estimation using signal-to-noise ratio dependent sub-band selection and peak detection strategy.
    Yarra C; Nagesh S; Deshmukh OD; Kumar Ghosh P
    J Acoust Soc Am; 2019 Sep; 146(3):1615. PubMed ID: 31590492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A constrained sequential EM algorithm for speech enhancement.
    Park S; Choi S
    Neural Netw; 2008 Nov; 21(9):1401-9. PubMed ID: 18439801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A recurrent neural fuzzy network for word boundary detection in variable noise-level environments.
    Wu GD; Lin CT
    IEEE Trans Syst Man Cybern B Cybern; 2001; 31(1):84-97. PubMed ID: 18244769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.