These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 11572388)

  • 1. Prediction of internal standards in reversed-phase liquid chromatography. 1. Initial study on predicting internal standards for use with neutral samples based on linear solvation energy relationships.
    Li J
    J Chromatogr A; 2001 Aug; 927(1-2):19-30. PubMed ID: 11572388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the retention dependence on the physicochemical properties of solutes in reversed-phase liquid chromatographic linear gradient elution based on linear solvation energy relationships.
    Li J; Cai B
    J Chromatogr A; 2001 Jan; 905(1-2):35-46. PubMed ID: 11206804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of internal standards in reversed-phase liquid chromatography. II. Selectivity optimization and internal standard prediction for the quantitation of estradiol and levonorgestrel in a transdermal drug delivery formulation based on the linear solvation energy relationships.
    Li J; Shah DS
    J Chromatogr A; 2002 Apr; 954(1-2):159-71. PubMed ID: 12058900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative study of the linear solvation energy relationship, linear solvent strength theory, and typical-conditions model for retention prediction in reversed-phase liquid chromatography.
    Wang A; Carr PW
    J Chromatogr A; 2002 Aug; 965(1-2):3-23. PubMed ID: 12236532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of internal standards in reversed-phase liquid chromatography. III. Evaluation of an alternative solvation parameter model to correlate and predict the retention of ionizable compounds.
    Li J
    J Chromatogr A; 2002 Dec; 982(2):209-23. PubMed ID: 12489877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel method for characterization and comparison of reversed-phase column selectivity.
    Wang J; Wang C; Guo Z; Dong X; Xiao Y; Xue X; Zhang X; Liang X
    J Chromatogr A; 2014 Sep; 1361():153-61. PubMed ID: 25155063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linear solvation energy relationships in normal phase chromatography based on gradient separations.
    Wu D; Lucy CA
    J Chromatogr A; 2017 Sep; 1516():64-70. PubMed ID: 28822573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of molecular interactions on retention and selectivity in reversed-phase liquid chromatography.
    Szepesy L
    J Chromatogr A; 2002 Jun; 960(1-2):69-83. PubMed ID: 12150564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-variable retention modelling in reversed-phase high-performance liquid chromatography based on the solvation method: a comparison between curvilinear and artificial neural network regression.
    D'Archivio AA; Maggi MA; Ruggieri F
    Anal Chim Acta; 2011 Mar; 690(1):35-46. PubMed ID: 21414434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retention of ionizable compounds on high-performance liquid chromatography XI. Global linear solvation energy relationships for neutral and ionizable compounds.
    Espinosa S; Bosch E; Rosés M
    J Chromatogr A; 2002 Feb; 945(1-2):83-96. PubMed ID: 11860147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of linear solvation energy relationships and principal component analysis methods for the prediction of the retention behaviour of E-resveratrol analogues with substituted silica hydride stationary phases.
    Danylec B; Kulsing C; Topete JC; Matyska MT; Pesek JJ; Boysen RI; Hearn MTW
    Anal Chim Acta; 2019 Dec; 1090():159-171. PubMed ID: 31655641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of retention in micellar liquid chromatography on a C8 column by the use of linear solvation energy relationships.
    García MA; Vitha MF; Sandquist J; Mulville K; Marina ML
    J Chromatogr A; 2001 May; 918(1):1-11. PubMed ID: 11403436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Fast optimization of stepwise gradient conditions for ternary mobile phase in reversed-phase high performance liquid chromatography].
    Shan YC; Zhang YK; Zhao RH
    Se Pu; 2002 Jul; 20(4):289-94. PubMed ID: 12541907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative study of solvation parameter models accounting the effects of mobile phase composition in reversed-phase liquid chromatography.
    Torres-Lapasió JR; Ruiz-Angel MJ; García-Alvarez-Coque MC
    J Chromatogr A; 2007 Sep; 1166(1-2):85-96. PubMed ID: 17720177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Secondary isotope effects in liquid chromatography behaviour of 2H and 3H labelled solutes and solvents.
    Valleix A; Carrat S; Caussignac C; Léonce E; Tchapla A
    J Chromatogr A; 2006 May; 1116(1-2):109-26. PubMed ID: 16631181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linear solvation energy relationships in micellar liquid chromatography and micellar electrokinetic capillary chromatography.
    Yang S; Khaledi MG
    J Chromatogr A; 1995 Feb; 692(1-2):301-10. PubMed ID: 7719457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative study of hydrocarbon, fluorocarbon, and aromatic bonded RP-HPLC stationary phases by linear solvation energy relationships.
    Reta M; Carr PW; Sadek PC; Rutan SC
    Anal Chem; 1999 Aug; 71(16):3484-96. PubMed ID: 10464478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The chemical interpretation and practice of linear solvation energy relationships in chromatography.
    Vitha M; Carr PW
    J Chromatogr A; 2006 Sep; 1126(1-2):143-94. PubMed ID: 16889784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of a modified linear solvation energy relationship (LSER) model to retention on a butylimidazolium-based column for high performance liquid chromatography.
    Fields PR; Sun Y; Stalcup AM
    J Chromatogr A; 2011 Jan; 1218(3):467-75. PubMed ID: 21168847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-column retention prediction in reversed-phase high-performance liquid chromatography by artificial neural network modelling.
    D'Archivio AA; Giannitto A; Maggi MA; Ruggieri F
    Anal Chim Acta; 2012 Mar; 717():52-60. PubMed ID: 22304815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.