These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 11572978)

  • 1. On the nature of a glassy state of matter in a hydrated protein: Relation to protein function.
    Teeter MM; Yamano A; Stec B; Mohanty U
    Proc Natl Acad Sci U S A; 2001 Sep; 98(20):11242-7. PubMed ID: 11572978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of cooperatively rearranging regions in a binary glass former.
    Mizuguchi T; Odagaki T
    J Phys Condens Matter; 2023 May; 35(33):. PubMed ID: 37172593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The protein "glass" transition and the role of the solvent.
    Ngai KL; Capaccioli S; Shinyashiki N
    J Phys Chem B; 2008 Mar; 112(12):3826-32. PubMed ID: 18318525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic resolution (0.83 A) crystal structure of the hydrophobic protein crambin at 130 K.
    Teeter MM; Roe SM; Heo NH
    J Mol Biol; 1993 Mar; 230(1):292-311. PubMed ID: 8450543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the "glass" transition in proteins.
    Sitnitsky AE
    J Biomol Struct Dyn; 2002 Feb; 19(4):595-605. PubMed ID: 11843621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Translational hydration water dynamics drives the protein glass transition.
    Tournier AL; Xu J; Smith JC
    Biophys J; 2003 Sep; 85(3):1871-5. PubMed ID: 12944299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluctuations within folded proteins: implications for thermodynamic and allosteric regulation.
    DuBay KH; Bowman GR; Geissler PL
    Acc Chem Res; 2015 Apr; 48(4):1098-105. PubMed ID: 25688669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An all-atom structure-based potential for proteins: bridging minimal models with all-atom empirical forcefields.
    Whitford PC; Noel JK; Gosavi S; Schug A; Sanbonmatsu KY; Onuchic JN
    Proteins; 2009 May; 75(2):430-41. PubMed ID: 18837035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variations on a theme by Debye and Waller: from simple crystals to proteins.
    García AE; Krumhansl JA; Frauenfelder H
    Proteins; 1997 Oct; 29(2):153-60. PubMed ID: 9329080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bulk-solvent and hydration-shell fluctuations, similar to alpha- and beta-fluctuations in glasses, control protein motions and functions.
    Fenimore PW; Frauenfelder H; McMahon BH; Young RD
    Proc Natl Acad Sci U S A; 2004 Oct; 101(40):14408-13. PubMed ID: 15448207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A theoretical analysis on characteristics of protein structures induced by cold denaturation.
    Oshima H; Yoshidome T; Amano K; Kinoshita M
    J Chem Phys; 2009 Nov; 131(20):205102. PubMed ID: 19947708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Configurational Disorder of Water Hydrogen-Bond Network at the Protein Dynamical Transition.
    Rahaman O; Kalimeri M; Katava M; Paciaroni A; Sterpone F
    J Phys Chem B; 2017 Jul; 121(28):6792-6798. PubMed ID: 28635287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein conformational entropy is not slaved to water.
    Marques BS; Stetz MA; Jorge C; Valentine KG; Wand AJ; Nucci NV
    Sci Rep; 2020 Oct; 10(1):17587. PubMed ID: 33067552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence of alpha fluctuations in myoglobin's denaturation in the high temperature region: Average relaxation time from an Adam-Gibbs perspective.
    Olivares-Quiroz L; Garcia-Colin LS
    Biophys Chem; 2009 Oct; 144(3):123-9. PubMed ID: 19713030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glass transition in thaumatin crystals revealed through temperature-dependent radiation-sensitivity measurements.
    Warkentin M; Thorne RE
    Acta Crystallogr D Biol Crystallogr; 2010 Oct; 66(Pt 10):1092-100. PubMed ID: 20944242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water-protein interactions: theory and experiment.
    Teeter MM
    Annu Rev Biophys Biophys Chem; 1991; 20():577-600. PubMed ID: 1867726
    [No Abstract]   [Full Text] [Related]  

  • 17. When physics meets chemistry at the dynamic glass transition.
    Lu H
    Rep Prog Phys; 2024 Feb; ():. PubMed ID: 38382098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An alternative explanation of the change in T-dependence of the effective Debye-Waller factor at T(c) or T(B).
    Ngai KL; Habasaki J
    J Chem Phys; 2014 Sep; 141(11):114502. PubMed ID: 25240359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamical transition of myoglobin in a crystal: comparative studies of X-ray crystallography and Mössbauer spectroscopy.
    Chong SH; Joti Y; Kidera A; Go N; Ostermann A; Gassmann A; Parak F
    Eur Biophys J; 2001 Sep; 30(5):319-29. PubMed ID: 11592689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dielectric study of the molecular mobility and the isothermal crystallization kinetics of an amorphous pharmaceutical drug substance.
    Alie J; Menegotto J; Cardon P; Duplaa H; Caron A; Lacabanne C; Bauer M
    J Pharm Sci; 2004 Jan; 93(1):218-33. PubMed ID: 14648651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.