BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 11573008)

  • 1. Molecular genetics and the evolution of ultraviolet vision in vertebrates.
    Shi Y; Radlwimmer FB; Yokoyama S
    Proc Natl Acad Sci U S A; 2001 Sep; 98(20):11731-6. PubMed ID: 11573008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetics and evolution of ultraviolet vision in vertebrates.
    Yokoyama S; Shi Y
    FEBS Lett; 2000 Dec; 486(2):167-72. PubMed ID: 11113460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tertiary structure and spectral tuning of UV and violet pigments in vertebrates.
    Yokoyama S; Starmer WT; Takahashi Y; Tada T
    Gene; 2006 Jan; 365():95-103. PubMed ID: 16343816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular analysis of the evolutionary significance of ultraviolet vision in vertebrates.
    Shi Y; Yokoyama S
    Proc Natl Acad Sci U S A; 2003 Jul; 100(14):8308-13. PubMed ID: 12824471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regeneration of ultraviolet pigments of vertebrates.
    Yokoyama S; Radlwimmer FB; Kawamura S
    FEBS Lett; 1998 Feb; 423(2):155-8. PubMed ID: 9512349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vision in the ultraviolet.
    Hunt DM; Wilkie SE; Bowmaker JK; Poopalasundaram S
    Cell Mol Life Sci; 2001 Oct; 58(11):1583-98. PubMed ID: 11706986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beyond spectral tuning: human cone visual pigments adopt different transient conformations for chromophore regeneration.
    Srinivasan S; Cordomí A; Ramon E; Garriga P
    Cell Mol Life Sci; 2016 Mar; 73(6):1253-63. PubMed ID: 26387074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary replacement of UV vision by violet vision in fish.
    Tada T; Altun A; Yokoyama S
    Proc Natl Acad Sci U S A; 2009 Oct; 106(41):17457-62. PubMed ID: 19805066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional characterization of spectral tuning mechanisms in the great bowerbird short-wavelength sensitive visual pigment (SWS1), and the origins of UV/violet vision in passerines and parrots.
    van Hazel I; Sabouhanian A; Day L; Endler JA; Chang BS
    BMC Evol Biol; 2013 Nov; 13():250. PubMed ID: 24499383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular evolution of arthropod color vision deduced from multiple opsin genes of jumping spiders.
    Koyanagi M; Nagata T; Katoh K; Yamashita S; Tokunaga F
    J Mol Evol; 2008 Feb; 66(2):130-7. PubMed ID: 18217181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Paleomolecular biology unravels the evolutionary mystery of vertebrate UV vision.
    Zhang J
    Proc Natl Acad Sci U S A; 2003 Jul; 100(14):8045-7. PubMed ID: 12835423
    [No Abstract]   [Full Text] [Related]  

  • 12. Ultraviolet pigments in birds evolved from violet pigments by a single amino acid change.
    Yokoyama S; Radlwimmer FB; Blow NS
    Proc Natl Acad Sci U S A; 2000 Jun; 97(13):7366-71. PubMed ID: 10861005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual pigments of African cichlid fishes: evidence for ultraviolet vision from microspectrophotometry and DNA sequences.
    Carleton KL; Hárosi FI; Kocher TD
    Vision Res; 2000; 40(8):879-90. PubMed ID: 10720660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of photoactivation in vertebrate short wavelength visual pigments: protonation of the retinylidene Schiff base and a counterion switch.
    Ramos LS; Chen MH; Knox BE; Birge RR
    Biochemistry; 2007 May; 46(18):5330-40. PubMed ID: 17439245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of phototransduction in short-wavelength cone visual pigments via the retinylidene Schiff base counterion.
    Babu KR; Dukkipati A; Birge RR; Knox BE
    Biochemistry; 2001 Nov; 40(46):13760-6. PubMed ID: 11705364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel amino acid substitution is responsible for spectral tuning in a rodent violet-sensitive visual pigment.
    Parry JW; Poopalasundaram S; Bowmaker JK; Hunt DM
    Biochemistry; 2004 Jun; 43(25):8014-20. PubMed ID: 15209496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short wavelength-sensitive opsins from the Saharan silver and carpenter ants.
    Smith WC; Ayers DM; Popp MP; Hargrave PA
    Invert Neurosci; 1997 Jun; 3(1):49-56. PubMed ID: 9706701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular basis of spectral tuning in the red- and green-sensitive (M/LWS) pigments in vertebrates.
    Yokoyama S; Yang H; Starmer WT
    Genetics; 2008 Aug; 179(4):2037-43. PubMed ID: 18660543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. H-bond network around retinal regulates the evolution of ultraviolet and violet vision.
    Altun A; Morokuma K; Yokoyama S
    ACS Chem Biol; 2011 Aug; 6(8):775-80. PubMed ID: 21650174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zebrafish ultraviolet visual pigment: absorption spectrum, sequence, and localization.
    Robinson J; Schmitt EA; Hárosi FI; Reece RJ; Dowling JE
    Proc Natl Acad Sci U S A; 1993 Jul; 90(13):6009-12. PubMed ID: 8327475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.