These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Blocking of malaria parasite development in mosquito and fecundity reduction by midgut antibodies in Anopheles stephensi (Diptera: Culicidae). Suneja A; Gulia M; Gakhar SK Arch Insect Biochem Physiol; 2003 Feb; 52(2):63-70. PubMed ID: 12529861 [TBL] [Abstract][Full Text] [Related]
24. Determination of mosquito bloodmeal pH in situ by ion-selective microelectrode measurement: implications for the regulation of malarial gametogenesis. Billker O; Miller AJ; Sinden RE Parasitology; 2000 Jun; 120 ( Pt 6)():547-51. PubMed ID: 10874717 [TBL] [Abstract][Full Text] [Related]
25. Both mosquito-derived xanthurenic acid and a host blood-derived factor regulate gametogenesis of Plasmodium in the midgut of the mosquito. Arai M; Billker O; Morris HR; Panico M; Delcroix M; Dixon D; Ley SV; Sinden RE Mol Biochem Parasitol; 2001 Aug; 116(1):17-24. PubMed ID: 11463462 [TBL] [Abstract][Full Text] [Related]
26. Molecular and phylogenetic analysis of a novel salivary defensin cDNA from malaria vector Anopheles stephensi. Dixit R; Sharma A; Patole MS; Shouche YS Acta Trop; 2008 Apr; 106(1):75-9. PubMed ID: 18275930 [TBL] [Abstract][Full Text] [Related]
27. Effect of xanthurenic acid on infectivity of Plasmodium falciparum to Anopheles stephensi. Bhattacharyya MK; Kumar N Int J Parasitol; 2001 Aug; 31(10):1129-33. PubMed ID: 11429178 [TBL] [Abstract][Full Text] [Related]
28. Isolation of a substance from the mosquito that activates Plasmodium fertilization. Garcia GE; Wirtz RA; Rosenberg R Mol Biochem Parasitol; 1997 Sep; 88(1-2):127-35. PubMed ID: 9274874 [TBL] [Abstract][Full Text] [Related]
29. A proteomic analysis of salivary glands of female Anopheles gambiae mosquito. Kalume DE; Okulate M; Zhong J; Reddy R; Suresh S; Deshpande N; Kumar N; Pandey A Proteomics; 2005 Sep; 5(14):3765-77. PubMed ID: 16127729 [TBL] [Abstract][Full Text] [Related]
30. A photomap of the salivary gland chromosomes of Anopheles stephensi liston (Culicidae: Diptera). Mittal OP; Dev V Cytobios; 1977; 19(75-76):151-7. PubMed ID: 569038 [TBL] [Abstract][Full Text] [Related]
31. [Effect of anti-midgut-protein-ingredient antibodies of Anopheles stephensi on the oocysts of Plasmodium yoelii]. Wei QF; Zeng LE; Sun BQ; Shao CL; Wang FY; Zhu XP Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi; 2006 Dec; 24(6):441-4. PubMed ID: 17366975 [TBL] [Abstract][Full Text] [Related]
33. Identification and characterization of a new kallikrein-kinin system inhibitor from the salivary glands of the malaria vector mosquito Anopheles stephensi. Isawa H; Orito Y; Iwanaga S; Jingushi N; Morita A; Chinzei Y; Yuda M Insect Biochem Mol Biol; 2007 May; 37(5):466-77. PubMed ID: 17456441 [TBL] [Abstract][Full Text] [Related]
34. Alterations in polypeptides pattern in malaria vector Anopheles stephensi, fed upon immunized blood causing fecundity reduction. Gulia M; Gakhar SK; Adak T Indian J Exp Biol; 2003 Jan; 41(1):94-6. PubMed ID: 15267145 [TBL] [Abstract][Full Text] [Related]
35. Overexpression and altered nucleocytoplasmic distribution of Anopheles ovalbumin-like SRPN10 serpins in Plasmodium-infected midgut cells. Danielli A; Barillas-Mury C; Kumar S; Kafatos FC; Loukeris TG Cell Microbiol; 2005 Feb; 7(2):181-90. PubMed ID: 15659062 [TBL] [Abstract][Full Text] [Related]
37. Identification and characterization of a new putative c-type lysozyme from malaria vector Anopheles stephensi. Dixit R; Dixit S; Gakhar S Indian J Biochem Biophys; 2006 Feb; 43(1):15-9. PubMed ID: 16955746 [TBL] [Abstract][Full Text] [Related]
38. Identification and characterization of gp65, a salivary-gland-specific molecule expressed in the malaria vector Anopheles albimanus. Montero-Solis C; Gonzalez-Ceron L; Rodriguez MH; Cirerol BE; Zamudio F; Possanni LD; James AA; de la Cruz Hernandez-Hernandez F Insect Mol Biol; 2004 Apr; 13(2):155-64. PubMed ID: 15056363 [TBL] [Abstract][Full Text] [Related]