These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 11574067)
21. Mutagenesis of Glycine 179 modulates both catalytic efficiency and reduced pyridine nucleotide specificity in cytochrome b5 reductase. Roma GW; Crowley LJ; Davis CA; Barber MJ Biochemistry; 2005 Oct; 44(41):13467-76. PubMed ID: 16216070 [TBL] [Abstract][Full Text] [Related]
22. Spectroscopic and kinetic characterization of the recombinant cytochrome c reductase fragment of nitrate reductase. Identification of the rate-limiting catalytic step. Ratnam K; Shiraishi N; Campbell WH; Hille R J Biol Chem; 1997 Jan; 272(4):2122-8. PubMed ID: 8999912 [TBL] [Abstract][Full Text] [Related]
23. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA. McLean KJ; Scrutton NS; Munro AW Biochem J; 2003 Jun; 372(Pt 2):317-27. PubMed ID: 12614197 [TBL] [Abstract][Full Text] [Related]
24. Two novel mutations in the reduced nicotinamide adenine dinucleotide (NADH)-cytochrome b5 reductase gene of a patient with generalized type, hereditary methemoglobinemia. Manabe J; Arya R; Sumimoto H; Yubisui T; Bellingham AJ; Layton DM; Fukumaki Y Blood; 1996 Oct; 88(8):3208-15. PubMed ID: 8874222 [TBL] [Abstract][Full Text] [Related]
25. The structure and biochemistry of NADH-dependent cytochrome b5 reductase are now consistent. Bewley MC; Marohnic CC; Barber MJ Biochemistry; 2001 Nov; 40(45):13574-82. PubMed ID: 11695905 [TBL] [Abstract][Full Text] [Related]
27. Electrostatic interaction between NADH-cytochrome b5 reductase and cytochrome b5 studied by site-directed mutagenesis. Shirabe K; Nagai T; Yubisui T; Takeshita M Biochim Biophys Acta; 1998 Apr; 1384(1):16-22. PubMed ID: 9602031 [TBL] [Abstract][Full Text] [Related]
28. Thiol modification and site directed mutagenesis of the flavin domain of spinach NADH:nitrate reductase. Trimboli AJ; Quinn GB; Smith ET; Barber MJ Arch Biochem Biophys; 1996 Jul; 331(1):117-26. PubMed ID: 8660690 [TBL] [Abstract][Full Text] [Related]
29. Binding of Cibacron blue F3GA to the flavin and NADH sites in cytochrome b5 reductase. Pompon D; Guiard B; Lederer F Eur J Biochem; 1980 Sep; 110(2):565-70. PubMed ID: 7439174 [TBL] [Abstract][Full Text] [Related]
30. Characterization of the role of lysine 110 of NADH-cytochrome b5 reductase in the binding and oxidation of NADH by site-directed mutagenesis. Strittmatter P; Kittler JM; Coghill JE J Biol Chem; 1992 Oct; 267(28):20164-7. PubMed ID: 1400335 [TBL] [Abstract][Full Text] [Related]
31. Role of Lys-110 of human NADH-cytochrome b5 reductase in NADH binding as probed by site-directed mutagenesis. Fujimoto Y; Shirabe K; Nagai T; Yubisui T; Takeshita M FEBS Lett; 1993 May; 322(1):30-2. PubMed ID: 8482363 [TBL] [Abstract][Full Text] [Related]
32. Structural and mechanistic roles of three consecutive Pro residues of porcine NADH-cytochrome b(5) reductase for the binding of beta-NADH. Nishimura Y; Shibuya M; Muraki A; Takeuchi F; Park SY; Tsubaki M J Biosci Bioeng; 2009 Oct; 108(4):286-92. PubMed ID: 19716516 [TBL] [Abstract][Full Text] [Related]
33. Contribution of Electrostatics to the Kinetics of Electron Transfer from NADH-Cytochrome b5 Reductase to Fe(III)-Cytochrome b5. Kollipara S; Tatireddy S; Pathirathne T; Rathnayake LK; Northrup SH J Phys Chem B; 2016 Aug; 120(33):8193-207. PubMed ID: 27059440 [TBL] [Abstract][Full Text] [Related]
34. Aspartate 120 of Escherichia coli methylenetetrahydrofolate reductase: evidence for major roles in folate binding and catalysis and a minor role in flavin reactivity. Trimmer EE; Ballou DP; Galloway LJ; Scannell SA; Brinker DR; Casas KR Biochemistry; 2005 May; 44(18):6809-22. PubMed ID: 15865426 [TBL] [Abstract][Full Text] [Related]
35. Simultaneous purification and characterization of cytochrome b5 reductase and cytochrome b5 from sheep liver. Arinç E; Cakir D Int J Biochem Cell Biol; 1999 Feb; 31(2):345-62. PubMed ID: 10216966 [TBL] [Abstract][Full Text] [Related]
36. Production of a recombinant hybrid hemoflavoprotein: engineering a functional NADH:cytochrome c reductase. Barber MJ; Quinn GB Protein Expr Purif; 2001 Nov; 23(2):348-58. PubMed ID: 11676611 [TBL] [Abstract][Full Text] [Related]
37. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase. Roitel O; Scrutton NS; Munro AW Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506 [TBL] [Abstract][Full Text] [Related]
38. Characterization of lysyl residues of NADH-cytochrome b5 reductase implicated in charge-pairing with active-site carboxyl residues of cytochrome b5 by site-directed mutagenesis of an expression vector for the flavoprotein. Strittmatter P; Kittler JM; Coghill JE; Ozols J J Biol Chem; 1992 Feb; 267(4):2519-23. PubMed ID: 1370824 [TBL] [Abstract][Full Text] [Related]
39. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain. Murataliev MB; Klein M; Fulco A; Feyereisen R Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888 [TBL] [Abstract][Full Text] [Related]
40. The C-terminal extension of bacterial flavodoxin-reductases: involvement in the hydride transfer mechanism from the coenzyme. Bortolotti A; Sánchez-Azqueta A; Maya CM; Velázquez-Campoy A; Hermoso JA; Medina M; Cortez N Biochim Biophys Acta; 2014 Jan; 1837(1):33-43. PubMed ID: 24016470 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]