BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 11574069)

  • 41. Chemical cleavage of the overexpressed mitochondrial F1beta precursor with CNBr: a new strategy to construct an import-competent preprotein.
    Pavlov PF; Moberg P; Zhang XP; Glaser E
    Biochem J; 1999 Jul; 341 ( Pt 1)(Pt 1):95-103. PubMed ID: 10377249
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Import of rat ornithine transcarbamylase precursor into mitochondria: two-step processing of the leader peptide.
    Sztul ES; Hendrick JP; Kraus JP; Wall D; Kalousek F; Rosenberg LE
    J Cell Biol; 1987 Dec; 105(6 Pt 1):2631-9. PubMed ID: 3693395
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Functional cooperation of the mitochondrial processing peptidase subunits.
    Luciano P; Geoffroy S; Brandt A; Hernandez JF; Géli V
    J Mol Biol; 1997 Sep; 272(2):213-25. PubMed ID: 9299349
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Xenopus laevis skin Arg-Xaa-Val-Arg-Gly-endoprotease. A highly specific protease cleaving after a single arginine of a consensus sequence of peptide hormone precursors.
    Kuks PF; Créminon C; Leseney AM; Bourdais J; Morel A; Cohen P
    J Biol Chem; 1989 Sep; 264(25):14609-12. PubMed ID: 2670921
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Catalytic mechanism of mitochondrial processing peptidase: fluorescence studies.
    Boteva R; Salvato B
    Arch Biochem Biophys; 1996 Aug; 332(2):323-8. PubMed ID: 8806741
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Processing-independent in vitro translocation of cytochrome P-450(SCC) precursor across mitochondrial membranes.
    Ou WJ; Ito A; Morohashi K; Fujii-Kuriyama Y; Omura T
    J Biochem; 1986 Nov; 100(5):1287-96. PubMed ID: 3818579
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Conversion of a nonprocessed mitochondrial precursor protein into one that is processed by the mitochondrial processing peptidase.
    Waltner M; Weiner H
    J Biol Chem; 1995 Nov; 270(44):26311-7. PubMed ID: 7592841
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Integration of the mitochondrial-processing peptidase into the cytochrome bc1 complex in plants.
    Glaser E; Dessi P
    J Bioenerg Biomembr; 1999 Jun; 31(3):259-74. PubMed ID: 10591532
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The bifunctional cytochrome c reductase/processing peptidase complex from plant mitochondria.
    Braun HP; Schmitz UK
    J Bioenerg Biomembr; 1995 Aug; 27(4):423-36. PubMed ID: 8595978
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A helical element in the C-terminal domain of the N. plumbaginifolia F1 beta presequence is important for recognition by the mitochondrial processing peptidase.
    Sjöling S; Eriksson AC; Glaser E
    J Biol Chem; 1994 Dec; 269(51):32059-62. PubMed ID: 7798199
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Aspartic acid 405 contributes to the substrate specificity of aminopeptidase B.
    Fukasawa KM; Hirose J; Hata T; Ono Y
    Biochemistry; 2006 Sep; 45(38):11425-31. PubMed ID: 16981702
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Active-site topology of bovine cholesterol side-chain cleavage cytochrome P450 (P450scc) and evidence for interaction of tyrosine 94 with the side chain of cholesterol.
    Pikuleva IA; Mackman RL; Kagawa N; Waterman MR; Ortiz de Montellano PR
    Arch Biochem Biophys; 1995 Sep; 322(1):189-97. PubMed ID: 7574674
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Positional and additive effects of basic amino acids on processing of precursor proteins within the constitutive secretory pathway.
    Watanabe T; Murakami K; Nakayama K
    FEBS Lett; 1993 Apr; 320(3):215-8. PubMed ID: 8462689
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Timing and structural consideration for the processing of mitochondrial matrix space proteins by the mitochondrial processing peptidase (MPP).
    Mukhopadhyay A; Hammen P; Waltner-Law M; Weiner H
    Protein Sci; 2002 May; 11(5):1026-35. PubMed ID: 11967360
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Amino-terminal octapeptides function as recognition signals for the mitochondrial intermediate peptidase.
    Isaya G; Kalousek F; Rosenberg LE
    J Biol Chem; 1992 Apr; 267(11):7904-10. PubMed ID: 1560019
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modification of the targeting presequence of the bovine cytochrome P-450scc precursor lifting tissue-specific restrictions on its mitochondrial import.
    Novikova LA; Savel'ev AS; Zvyagil'skaya RA; Luzikov VN
    FEBS Lett; 1996 Jan; 378(2):182-4. PubMed ID: 8549829
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Activation Mechanism of the Bacteroides fragilis Cysteine Peptidase, Fragipain.
    Herrou J; Choi VM; Bubeck Wardenburg J; Crosson S
    Biochemistry; 2016 Jul; 55(29):4077-84. PubMed ID: 27379832
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A putative metal-binding site in the beta subunit of rat mitochondrial processing peptidase is essential for its catalytic activity.
    Kitada S; Shimokata K; Niidome T; Ogishima T; Ito A
    J Biochem; 1995 Jun; 117(6):1148-50. PubMed ID: 7490252
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Prediction and identification of new natural substrates of the yeast mitochondrial intermediate peptidase.
    Branda SS; Isaya G
    J Biol Chem; 1995 Nov; 270(45):27366-73. PubMed ID: 7593000
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structural basis for three-step sequential catalysis by the cholesterol side chain cleavage enzyme CYP11A1.
    Mast N; Annalora AJ; Lodowski DT; Palczewski K; Stout CD; Pikuleva IA
    J Biol Chem; 2011 Feb; 286(7):5607-13. PubMed ID: 21159775
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.