These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 11574257)

  • 1. Material optimization of femoral component of total hip prosthesis using fiber reinforced polymeric composites.
    Katoozian H; Davy DT; Arshi A; Saadati U
    Med Eng Phys; 2001 Sep; 23(7):503-9. PubMed ID: 11574257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon/PEEK composite materials as an alternative for stainless steel/titanium hip prosthesis: a finite element study.
    Rezaei F; Hassani K; Solhjoei N; Karimi A
    Australas Phys Eng Sci Med; 2015 Dec; 38(4):569-80. PubMed ID: 26462678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel surface modifications of carbon fiber-reinforced polyetheretherketone hip stem in an ovine model.
    Nakahara I; Takao M; Bandoh S; Bertollo N; Walsh WR; Sugano N
    Artif Organs; 2012 Jan; 36(1):62-70. PubMed ID: 21819435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical and experimental stress analysis of a polymeric composite hip joint prosthesis.
    Akay M; Aslan N
    J Biomed Mater Res; 1996 Jun; 31(2):167-82. PubMed ID: 8731205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of wear in composite material orthopaedic implants. Part II: The implant/bone interface.
    Albert K; Schledjewski R; Harbaugh M; Bleser S; Jamison R; Friedrich K
    Biomed Mater Eng; 1994; 4(3):199-211. PubMed ID: 7950869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Composite hip prosthesis design. II. Simulation.
    Yildiz H; Chang FK; Goodman S
    J Biomed Mater Res; 1998 Jan; 39(1):102-19. PubMed ID: 9429102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of loads and prosthesis material properties on the mechanics of the proximal femur after total hip arthroplasty.
    Cheal EJ; Spector M; Hayes WC
    J Orthop Res; 1992 May; 10(3):405-22. PubMed ID: 1569504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study and numerical analysis of Von Mises stress of a new tumor-type distal femoral prosthesis comprising a peek composite reinforced with carbon fibers: finite element analysis.
    Guo Y; Guo W
    Comput Methods Biomech Biomed Engin; 2022 Nov; 25(15):1663-1677. PubMed ID: 35094629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo implant fixation of carbon fiber-reinforced PEEK hip prostheses in an ovine model.
    Nakahara I; Takao M; Bandoh S; Bertollo N; Walsh WR; Sugano N
    J Orthop Res; 2013 Mar; 31(3):485-92. PubMed ID: 23097319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New design of hip prosthesis using carbon fibre reinforced composite.
    Shirandami R; Esat II
    J Biomed Eng; 1990 Jan; 12(1):19-22. PubMed ID: 2296163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Composite hip prosthesis design. I. Analysis.
    Yildiz H; Ha SK; Chang FK
    J Biomed Mater Res; 1998 Jan; 39(1):92-101. PubMed ID: 9429101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of material properties of femoral hip components on bone remodeling.
    Weinans H; Huiskes R; Grootenboer HJ
    J Orthop Res; 1992 Nov; 10(6):845-53. PubMed ID: 1403299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon fiber-reinforced PEEK in implant dentistry: A scoping review on the finite element method.
    Souza JCM; Pinho SS; Braz MP; Silva FS; Henriques B
    Comput Methods Biomech Biomed Engin; 2021 Sep; 24(12):1355-1367. PubMed ID: 33616450
    [No Abstract]   [Full Text] [Related]  

  • 14. Wear of ceramic-on-carbon fiber-reinforced poly-ether ether ketone hip replacements.
    Brockett CL; John G; Williams S; Jin Z; Isaac GH; Fisher J
    J Biomed Mater Res B Appl Biomater; 2012 Aug; 100(6):1459-65. PubMed ID: 22454322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A numerical study of failure mechanisms in the cemented resurfaced femur: effects of interface characteristics and bone remodelling.
    Pal B; Gupta S; New AM
    Proc Inst Mech Eng H; 2009 May; 223(4):471-84. PubMed ID: 19499837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone remodeling in a new biomimetic polymer-composite hip stem.
    Bougherara H; Bureau MN; Yahia L
    J Biomed Mater Res A; 2010 Jan; 92(1):164-74. PubMed ID: 19165787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new design of cemented stem using functionally graded materials (FGM).
    Hedia HS; Aldousari SM; Abdellatif AK; Fouda N
    Biomed Mater Eng; 2014; 24(3):1575-88. PubMed ID: 24840196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of sliding-taper compared with composite-beam cemented femoral prosthesis loading regime on proximal femoral bone remodeling: a randomized clinical trial.
    Jayasuriya RL; Buckley SC; Hamer AJ; Kerry RM; Stockley I; Tomouk MW; Wilkinson JM
    J Bone Joint Surg Am; 2013 Jan; 95(1):19-27. PubMed ID: 23283370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Noncemented total hip arthroplasty: influence of extramedullary parameters on initial implant stability and on bone-implant interface stresses].
    Ramaniraka NA; Rakotomanana LR; Rubin PJ; Leyvraz P
    Rev Chir Orthop Reparatrice Appar Mot; 2000 Oct; 86(6):590-7. PubMed ID: 11060433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of new generation femoral prostheses using functionally graded materials: a finite element analysis.
    Oshkour AA; Abu Osman NA; Yau YH; Tarlochan F; Abas WA
    Proc Inst Mech Eng H; 2013 Jan; 227(1):3-17. PubMed ID: 23516951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.