These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 11574674)

  • 1. A computational approach to identify genes for functional RNAs in genomic sequences.
    Carter RJ; Dubchak I; Holbrook SR
    Nucleic Acids Res; 2001 Oct; 29(19):3928-38. PubMed ID: 11574674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome alignment, evolution of prokaryotic genome organization, and prediction of gene function using genomic context.
    Wolf YI; Rogozin IB; Kondrashov AS; Koonin EV
    Genome Res; 2001 Mar; 11(3):356-72. PubMed ID: 11230160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions.
    Besemer J; Lomsadze A; Borodovsky M
    Nucleic Acids Res; 2001 Jun; 29(12):2607-18. PubMed ID: 11410670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The amazing world of bacterial structured RNAs.
    Westhof E
    Genome Biol; 2010; 11(3):108. PubMed ID: 20236470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative genomics reveals 104 candidate structured RNAs from bacteria, archaea, and their metagenomes.
    Weinberg Z; Wang JX; Bogue J; Yang J; Corbino K; Moy RH; Breaker RR
    Genome Biol; 2010; 11(3):R31. PubMed ID: 20230605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic prediction of functionally linked genes in bacterial and archaeal genomes.
    Shmakov SA; Faure G; Makarova KS; Wolf YI; Severinov KV; Koonin EV
    Nat Protoc; 2019 Oct; 14(10):3013-3031. PubMed ID: 31520072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide experimental determination of barriers to horizontal gene transfer.
    Sorek R; Zhu Y; Creevey CJ; Francino MP; Bork P; Rubin EM
    Science; 2007 Nov; 318(5855):1449-52. PubMed ID: 17947550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ANNOgesic: a Swiss army knife for the RNA-seq based annotation of bacterial/archaeal genomes.
    Yu SH; Vogel J; Förstner KU
    Gigascience; 2018 Sep; 7(9):. PubMed ID: 30169674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive discovery of novel structured noncoding RNAs in 26 bacterial genomes.
    Brewer KI; Greenlee EB; Higgs G; Yu D; Mirihana Arachchilage G; Chen X; King N; White N; Breaker RR
    RNA Biol; 2021 Dec; 18(12):2417-2432. PubMed ID: 33970790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of transcription regulatory sites in Archaea by a comparative genomic approach.
    Gelfand MS; Koonin EV; Mironov AA
    Nucleic Acids Res; 2000 Feb; 28(3):695-705. PubMed ID: 10637320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. sRNA Target Prediction Organizing Tool (SPOT) Integrates Computational and Experimental Data To Facilitate Functional Characterization of Bacterial Small RNAs.
    King AM; Vanderpool CK; Degnan PH
    mSphere; 2019 Jan; 4(1):. PubMed ID: 30700509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of 17 Pseudomonas aeruginosa sRNAs and prediction of sRNA-encoding genes in 10 diverse pathogens using the bioinformatic tool sRNAPredict2.
    Livny J; Brencic A; Lory S; Waldor MK
    Nucleic Acids Res; 2006; 34(12):3484-93. PubMed ID: 16870723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Support Vector Machine based method to distinguish long non-coding RNAs from protein coding transcripts.
    Schneider HW; Raiol T; Brigido MM; Walter MEMT; Stadler PF
    BMC Genomics; 2017 Oct; 18(1):804. PubMed ID: 29047334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. sRNAPredict: an integrative computational approach to identify sRNAs in bacterial genomes.
    Livny J; Fogel MA; Davis BM; Waldor MK
    Nucleic Acids Res; 2005; 33(13):4096-105. PubMed ID: 16049021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. De novo computational prediction of non-coding RNA genes in prokaryotic genomes.
    Tran TT; Zhou F; Marshburn S; Stead M; Kushner SR; Xu Y
    Bioinformatics; 2009 Nov; 25(22):2897-905. PubMed ID: 19744996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Re-annotation of genome microbial coding-sequences: finding new genes and inaccurately annotated genes.
    Bocs S; Danchin A; Médigue C
    BMC Bioinformatics; 2002; 3():5. PubMed ID: 11879526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Promoter-based identification of novel non-coding RNAs reveals the presence of dicistronic snoRNA-miRNA genes in Arabidopsis thaliana.
    Qu G; Kruszka K; Plewka P; Yang SY; Chiou TJ; Jarmolowski A; Szweykowska-Kulinska Z; Echeverria M; Karlowski WM
    BMC Genomics; 2015 Nov; 16():1009. PubMed ID: 26607788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of small, noncoding RNAs in bacteria using heterogeneous data.
    Tjaden B
    J Math Biol; 2008 Jan; 56(1-2):183-200. PubMed ID: 17354017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel small RNA-encoding genes in the intergenic regions of Escherichia coli.
    Argaman L; Hershberg R; Vogel J; Bejerano G; Wagner EG; Margalit H; Altuvia S
    Curr Biol; 2001 Jun; 11(12):941-50. PubMed ID: 11448770
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.