BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

747 related articles for article (PubMed ID: 11575165)

  • 21. Translation of the yeast transcriptional activator GCN4 is stimulated by purine limitation: implications for activation of the protein kinase GCN2.
    Rolfes RJ; Hinnebusch AG
    Mol Cell Biol; 1993 Aug; 13(8):5099-111. PubMed ID: 8336737
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interplay between insulin and nutrients in the regulation of translation factors.
    Proud CG; Wang X; Patel JV; Campbell LE; Kleijn M; Li W; Browne GJ
    Biochem Soc Trans; 2001 Aug; 29(Pt 4):541-7. PubMed ID: 11498025
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of mammalian translation factors by nutrients.
    Proud CG
    Eur J Biochem; 2002 Nov; 269(22):5338-49. PubMed ID: 12423332
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Translational control of protein synthesis in muscle and liver of growth hormone-treated pigs.
    Bush JA; Kimball SR; O'Connor PM; Suryawan A; Orellana RA; Nguyen HV; Jefferson LS; Davis TA
    Endocrinology; 2003 Apr; 144(4):1273-83. PubMed ID: 12639910
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sepsis-induced suppression of skeletal muscle translation initiation mediated by tumor necrosis factor alpha.
    Lang CH; Frost RA
    Metabolism; 2007 Jan; 56(1):49-57. PubMed ID: 17161226
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of global and specific mRNA translation by amino acids.
    Kimball SR
    J Nutr; 2002 May; 132(5):883-6. PubMed ID: 11983807
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rapamycin-induced translational derepression of GCN4 mRNA involves a novel mechanism for activation of the eIF2 alpha kinase GCN2.
    Kubota H; Obata T; Ota K; Sasaki T; Ito T
    J Biol Chem; 2003 Jun; 278(23):20457-60. PubMed ID: 12676950
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ribosome-binding domain of eukaryotic initiation factor-2 kinase GCN2 facilitates translation control.
    Zhu S; Wek RC
    J Biol Chem; 1998 Jan; 273(3):1808-14. PubMed ID: 9430731
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mutations in the GCD7 subunit of yeast guanine nucleotide exchange factor eIF-2B overcome the inhibitory effects of phosphorylated eIF-2 on translation initiation.
    Vazquez de Aldana CR; Hinnebusch AG
    Mol Cell Biol; 1994 May; 14(5):3208-22. PubMed ID: 8164676
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Resistance exercise increases muscle protein synthesis and translation of eukaryotic initiation factor 2Bepsilon mRNA in a mammalian target of rapamycin-dependent manner.
    Kubica N; Bolster DR; Farrell PA; Kimball SR; Jefferson LS
    J Biol Chem; 2005 Mar; 280(9):7570-80. PubMed ID: 15591312
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The beta/Gcd7 subunit of eukaryotic translation initiation factor 2B (eIF2B), a guanine nucleotide exchange factor, is crucial for binding eIF2 in vivo.
    Dev K; Qiu H; Dong J; Zhang F; Barthlme D; Hinnebusch AG
    Mol Cell Biol; 2010 Nov; 30(21):5218-33. PubMed ID: 20805354
    [TBL] [Abstract][Full Text] [Related]  

  • 32. TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function.
    Schalm SS; Fingar DC; Sabatini DM; Blenis J
    Curr Biol; 2003 May; 13(10):797-806. PubMed ID: 12747827
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Casein kinase II mediates multiple phosphorylation of Saccharomyces cerevisiae eIF-2 alpha (encoded by SUI2), which is required for optimal eIF-2 function in S. cerevisiae.
    Feng L; Yoon H; Donahue TF
    Mol Cell Biol; 1994 Aug; 14(8):5139-53. PubMed ID: 8035796
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deficiency of dietary EAA preferentially inhibits mRNA translation of ribosomal proteins in liver of meal-fed rats.
    Anthony TG; Reiter AK; Anthony JC; Kimball SR; Jefferson LS
    Am J Physiol Endocrinol Metab; 2001 Sep; 281(3):E430-9. PubMed ID: 11500297
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulated translation initiation controls stress-induced gene expression in mammalian cells.
    Harding HP; Novoa I; Zhang Y; Zeng H; Wek R; Schapira M; Ron D
    Mol Cell; 2000 Nov; 6(5):1099-108. PubMed ID: 11106749
    [TBL] [Abstract][Full Text] [Related]  

  • 36. IGF-I activates the eIF4F system in cardiac muscle in vivo.
    Vary TC; Lang CH
    Mol Cell Biochem; 2005 Apr; 272(1-2):209-20. PubMed ID: 16010989
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glucose exerts a permissive effect on the regulation of the initiation factor 4E binding protein 4E-BP1.
    Patel J; Wang X; Proud CG
    Biochem J; 2001 Sep; 358(Pt 2):497-503. PubMed ID: 11513750
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Endotoxin induces differential regulation of mTOR-dependent signaling in skeletal muscle and liver of neonatal pigs.
    Kimball SR; Orellana RA; O'Connor PM; Suryawan A; Bush JA; Nguyen HV; Thivierge MC; Jefferson LS; Davis TA
    Am J Physiol Endocrinol Metab; 2003 Sep; 285(3):E637-44. PubMed ID: 12773308
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gene-specific translational control of the yeast GCN4 gene by phosphorylation of eukaryotic initiation factor 2.
    Hinnebusch AG
    Mol Microbiol; 1993 Oct; 10(2):215-23. PubMed ID: 7934812
    [TBL] [Abstract][Full Text] [Related]  

  • 40. p53 activation results in rapid dephosphorylation of the eIF4E-binding protein 4E-BP1, inhibition of ribosomal protein S6 kinase and inhibition of translation initiation.
    Horton LE; Bushell M; Barth-Baus D; Tilleray VJ; Clemens MJ; Hensold JO
    Oncogene; 2002 Aug; 21(34):5325-34. PubMed ID: 12149653
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 38.