BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

773 related articles for article (PubMed ID: 11575472)

  • 1. Petal-like apatite formed on the surface of tricalcium phosphate ceramic after soaking in distilled water.
    Lin FH; Liao CJ; Chen KS; Su JS; Lin CP
    Biomaterials; 2001 Nov; 22(22):2981-92. PubMed ID: 11575472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface instability of calcium phosphate ceramics in tissue culture medium and the effect on adhesion and growth of anchorage-dependent animal cells.
    Suzuki T; Yamamoto T; Toriyama M; Nishizawa K; Yokogawa Y; Mucalo MR; Kawamoto Y; Nagata F; Kameyama T
    J Biomed Mater Res; 1997 Mar; 34(4):507-17. PubMed ID: 9054534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase conversion of tricalcium phosphate into Ca-deficient apatite during sintering of hydroxyapatite-tricalcium phosphate biphasic ceramics.
    Kong YM; Kim HE; Kim HW
    J Biomed Mater Res B Appl Biomater; 2008 Feb; 84(2):334-9. PubMed ID: 17595029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro degradation, bioactivity, and cytocompatibility of calcium silicate, dimagnesium silicate, and tricalcium phosphate bioceramics.
    Ni S; Chang J
    J Biomater Appl; 2009 Aug; 24(2):139-58. PubMed ID: 18801892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. αTCP ceramic doped with dicalcium silicate for bone regeneration applications prepared by powder metallurgy method: in vitro and in vivo studies.
    Velasquez P; Luklinska ZB; Meseguer-Olmo L; Mate-Sanchez de Val JE; Delgado-Ruiz RA; Calvo-Guirado JL; Ramirez-Fernandez MP; de Aza PN
    J Biomed Mater Res A; 2013 Jul; 101(7):1943-54. PubMed ID: 23225787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Apatite formation on the surface of wollastonite/tricalcium phosphate composite immersed in simulated body fluid.
    Huang X; Jiang D; Tan S
    J Biomed Mater Res B Appl Biomater; 2004 Apr; 69(1):70-2. PubMed ID: 15015212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strontium Substituted β-Tricalcium Phosphate Ceramics: Physiochemical Properties and Cytocompatibility.
    Fadeeva IV; Deyneko DV; Forysenkova AA; Morozov VA; Akhmedova SA; Kirsanova VA; Sviridova IK; Sergeeva NS; Rodionov SA; Udyanskaya IL; Antoniac IV; Rau JV
    Molecules; 2022 Sep; 27(18):. PubMed ID: 36144818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro stability of biphasic calcium phosphate ceramics.
    Kohri M; Miki K; Waite DE; Nakajima H; Okabe T
    Biomaterials; 1993; 14(4):299-304. PubMed ID: 8386558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of apatite ceramics containing alpha-tricalcium phosphate by immersion in simulated body fluid.
    Hirakata LM; Kon M; Asaoka K
    Biomed Mater Eng; 2003; 13(3):247-59. PubMed ID: 12883174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface reactions of calcium phosphate ceramics to various solutions.
    Hyakuna K; Yamamuro T; Kotoura Y; Oka M; Nakamura T; Kitsugi T; Kokubo T; Kushitani H
    J Biomed Mater Res; 1990 Apr; 24(4):471-88. PubMed ID: 2347873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and biological characteristics of beta-tricalcium phosphate porous ceramic scaffolds reinforced with calcium phosphate glass.
    Cai S; Xu GH; Yu XZ; Zhang WJ; Xiao ZY; Yao KD
    J Mater Sci Mater Med; 2009 Jan; 20(1):351-8. PubMed ID: 18807260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of calcium phosphate ceramic composition and structure on in vitro behavior. II. Precipitation.
    Radin SR; Ducheyne P
    J Biomed Mater Res; 1993 Jan; 27(1):35-45. PubMed ID: 8380597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mineralisation of two phosphate ceramics in HBSS: role of albumin.
    Marques PA; Serro AP; Saramago BJ; Fernandes AC; Magalhães MC; Correia RN
    Biomaterials; 2003 Feb; 24(3):451-60. PubMed ID: 12423600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface-layer modification of hydroxyapatite ceramic with acid and heat treatments.
    Kon M; Hirakata LM; Miyamoto Y; Kawano F; Asaoka K
    Dent Mater J; 2002 Jun; 21(2):170-80. PubMed ID: 12238785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro bioactivity, mechanical behavior and antibacterial properties of mesoporous SiO
    Mubina MSK; Shailajha S; Sankaranarayanan R; Saranya L
    J Mech Behav Biomed Mater; 2019 Dec; 100():103379. PubMed ID: 31398691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic study of calcium phosphate formation on porous HA/TCP ceramics.
    Duan YR; Zhang ZR; Wang CY; Chen JY; Zhang XD
    J Mater Sci Mater Med; 2005 Sep; 16(9):795-801. PubMed ID: 16167107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. XRD, SEM-EDS, and FTIR studies of in vitro growth of an apatite-like layer on sol-gel glasses.
    Vallet-Regí M; Romero AM; Ragel CV; LeGeros RZ
    J Biomed Mater Res; 1999 Mar; 44(4):416-21. PubMed ID: 10397945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioactive ceramic composites sintered from hydroxyapatite and silica at 1,200 degrees C: preparation, microstructures and in vitro bone-like layer growth.
    Li XW; Yasuda HY; Umakoshi Y
    J Mater Sci Mater Med; 2006 Jun; 17(6):573-81. PubMed ID: 16691357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physico-chemical characterization of zirconia-titania composites coated with an apatite layer for dental implants.
    Marchi J; Amorim EM; Lazar DR; Ussui V; Bressiani AH; Cesar PF
    Dent Mater; 2013 Sep; 29(9):954-62. PubMed ID: 23891476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase formation and evolution in the silicon substituted tricalcium phosphate/apatite system.
    Reid JW; Pietak A; Sayer M; Dunfield D; Smith TJ
    Biomaterials; 2005 Jun; 26(16):2887-97. PubMed ID: 15603784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.