These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 11576897)

  • 1. Transforming growth factor-beta as a target for treatment in diabetic nephropathy.
    Basile DP
    Am J Kidney Dis; 2001 Oct; 38(4):887-92. PubMed ID: 11576897
    [No Abstract]   [Full Text] [Related]  

  • 2. Application of an adenoviral vector encoding soluble transforming growth factor-beta type II receptor to the treatment of diabetic nephropathy in mice.
    Kondo T; Takemura G; Kosai K; Ohno T; Takahashi T; Esaki M; Goto K; Maruyama R; Murata I; Minatoguchi S; Fujiwara T; Fujiwara H
    Clin Exp Pharmacol Physiol; 2008 Nov; 35(11):1288-93. PubMed ID: 18505441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of transforming growth factor beta in diabetic nephropathy.
    Ziyadeh FN
    Exp Nephrol; 1994; 2(2):137. PubMed ID: 8082013
    [No Abstract]   [Full Text] [Related]  

  • 4. Suppression of transforming growth factor beta and vascular endothelial growth factor in diabetic nephropathy in rats by a novel advanced glycation end product inhibitor, OPB-9195.
    Tsuchida K; Makita Z; Yamagishi S; Atsumi T; Miyoshi H; Obara S; Ishida M; Ishikawa S; Yasumura K; Koike T
    Diabetologia; 1999 May; 42(5):579-88. PubMed ID: 10333051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting TGF could counter diabetic nephropathy.
    Greener M
    Mol Med Today; 2000 Oct; 6(10):376. PubMed ID: 11006518
    [No Abstract]   [Full Text] [Related]  

  • 6. [Novel therapeutic strategy for diabetic nephropathy].
    Isono M; Haneda M
    Nihon Rinsho; 2005 Jun; 63 Suppl 6():464-8. PubMed ID: 15999753
    [No Abstract]   [Full Text] [Related]  

  • 7. Thrombospondin-1 is an endogenous activator of TGF-beta in experimental diabetic nephropathy in vivo.
    Daniel C; Schaub K; Amann K; Lawler J; Hugo C
    Diabetes; 2007 Dec; 56(12):2982-9. PubMed ID: 17878288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence that TGF-beta should be a therapeutic target in diabetic nephropathy.
    Border WA; Noble NA
    Kidney Int; 1998 Oct; 54(4):1390-1. PubMed ID: 9773681
    [No Abstract]   [Full Text] [Related]  

  • 9. Different roles for TGF-beta and VEGF in the pathogenesis of the cardinal features of diabetic nephropathy.
    Ziyadeh FN
    Diabetes Res Clin Pract; 2008 Nov; 82 Suppl 1():S38-41. PubMed ID: 18842317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transforming growth factor beta in diabetic nephropathy.
    Border WA; Yamamoto T; Noble NA
    Diabetes Metab Rev; 1996 Dec; 12(4):309-39. PubMed ID: 9013074
    [No Abstract]   [Full Text] [Related]  

  • 11. Role of transforming growth factor-beta in diabetic glomerulosclerosis and renal hypertrophy.
    Ziyadeh FN; Sharma K
    Kidney Int Suppl; 1995 Sep; 51():S34-6. PubMed ID: 7474686
    [No Abstract]   [Full Text] [Related]  

  • 12. Advances in pathogenetic mechanisms of diabetic nephropathy.
    Nicholas SB
    Cell Mol Biol (Noisy-le-grand); 2003 Dec; 49(8):1319-25. PubMed ID: 14984004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Favorable treatment outcome with neutralizing anti-transforming growth factor beta antibodies in experimental diabetic kidney disease.
    Han DC; Ziyadeh FN
    Perit Dial Int; 1999; 19 Suppl 2():S234-7. PubMed ID: 10406525
    [No Abstract]   [Full Text] [Related]  

  • 14. Macrophage scavenger receptor-a-deficient mice are resistant against diabetic nephropathy through amelioration of microinflammation.
    Usui HK; Shikata K; Sasaki M; Okada S; Matsuda M; Shikata Y; Ogawa D; Kido Y; Nagase R; Yozai K; Ohga S; Tone A; Wada J; Takeya M; Horiuchi S; Kodama T; Makino H
    Diabetes; 2007 Feb; 56(2):363-72. PubMed ID: 17259380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aliskiren enhances protective effects of valsartan against type 2 diabetic nephropathy in mice.
    Dong YF; Liu L; Lai ZF; Yamamoto E; Kataoka K; Nakamura T; Fukuda M; Tokutomi Y; Nako H; Ogawa H; Kim-Mitsuyama S
    J Hypertens; 2010 Jul; 28(7):1554-65. PubMed ID: 20375908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deletion of protein kinase C-beta isoform in vivo reduces renal hypertrophy but not albuminuria in the streptozotocin-induced diabetic mouse model.
    Meier M; Park JK; Overheu D; Kirsch T; Lindschau C; Gueler F; Leitges M; Menne J; Haller H
    Diabetes; 2007 Feb; 56(2):346-54. PubMed ID: 17259378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tubular atrophy, interstitial fibrosis, and inflammation in type 2 diabetic db/db mice. An accelerated model of advanced diabetic nephropathy.
    Ninichuk V; Kulkarni O; Clauss S; Anders H-
    Eur J Med Res; 2007 Aug; 12(8):351-5. PubMed ID: 17933712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Mechanisms for the development and progression of diabetic nephropathy].
    Haneda M
    Nihon Rinsho; 2006 Feb; 64 Suppl 2():427-32. PubMed ID: 16523927
    [No Abstract]   [Full Text] [Related]  

  • 19. Eicosapentaenoic acid ameliorates diabetic nephropathy of type 2 diabetic KKAy/Ta mice: involvement of MCP-1 suppression and decreased ERK1/2 and p38 phosphorylation.
    Hagiwara S; Makita Y; Gu L; Tanimoto M; Zhang M; Nakamura S; Kaneko S; Itoh T; Gohda T; Horikoshi S; Tomino Y
    Nephrol Dial Transplant; 2006 Mar; 21(3):605-15. PubMed ID: 16282336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spironolactone exhibits direct renoprotective effects and inhibits renal renin-angiotensin-aldosterone system in diabetic rats.
    Taira M; Toba H; Murakami M; Iga I; Serizawa R; Murata S; Kobara M; Nakata T
    Eur J Pharmacol; 2008 Jul; 589(1-3):264-71. PubMed ID: 18582458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.