These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 11577245)
1. An oscillating extracellular voltage gradient reduces the density and influences the orientation of astrocytes in injured mammalian spinal cord. Moriarty LJ; Borgens RB J Neurocytol; 2001 Jan; 30(1):45-57. PubMed ID: 11577245 [TBL] [Abstract][Full Text] [Related]
2. Epidural oscillating field stimulation as an effective therapeutic approach in combination therapy for spinal cord injury. Bacova M; Bimbova K; Fedorova J; Lukacova N; Galik J J Neurosci Methods; 2019 Jan; 311():102-110. PubMed ID: 30339879 [TBL] [Abstract][Full Text] [Related]
3. Connexin43 and astrocytic gap junctions in the rat spinal cord after acute compression injury. Theriault E; Frankenstein UN; Hertzberg EL; Nagy JI J Comp Neurol; 1997 Jun; 382(2):199-214. PubMed ID: 9183689 [TBL] [Abstract][Full Text] [Related]
4. Alterations in temporal/spatial distribution of GFAP- and vimentin-positive astrocytes after spinal cord contusion with the New York University spinal cord injury device. Baldwin SA; Broderick R; Blades DA; Scheff SW J Neurotrauma; 1998 Dec; 15(12):1015-26. PubMed ID: 9872458 [TBL] [Abstract][Full Text] [Related]
5. Modulation of NADPH-diaphorase and glial fibrillary acidic protein by progesterone in astrocytes from normal and injured rat spinal cord. Labombarda F; Gonzalez S; Roig P; Lima A; Guennoun R; Schumacher M; De Nicola AF J Steroid Biochem Mol Biol; 2000 Jun; 73(3-4):159-69. PubMed ID: 10925216 [TBL] [Abstract][Full Text] [Related]
6. Spinal cord injury-induced astrocyte migration and glial scar formation: effects of magnetic stimulation frequency. Li Z; Fang ZY; Xiong L; Huang XL Indian J Biochem Biophys; 2010 Dec; 47(6):359-63. PubMed ID: 21355419 [TBL] [Abstract][Full Text] [Related]
7. [Reactive astrocytes and nestin expression in adult rats following spinal cord compression injury]. Yang PL; He XJ; Li HP; Lan BS; Wang D; Wang GY; Xu SY; Liu YH Nan Fang Yi Ke Da Xue Xue Bao; 2008 Oct; 28(10):1752-5. PubMed ID: 18971163 [TBL] [Abstract][Full Text] [Related]
8. Reconstruction of the glial environment of a photochemically induced lesion in the rat spinal cord by transplantation of mixed glial cells. Olby NJ; Blakemore WF J Neurocytol; 1996 Aug; 25(8):481-98. PubMed ID: 8899569 [TBL] [Abstract][Full Text] [Related]
10. [The therapeutic effect of pulsed electric field on experimental spinal cord injury]. Dong YQ Zhonghua Wai Ke Za Zhi; 1992 Mar; 30(3):180-3, 191. PubMed ID: 1473395 [TBL] [Abstract][Full Text] [Related]
11. Glial scar and neuroregeneration: histological, functional, and magnetic resonance imaging analysis in chronic spinal cord injury. Hu R; Zhou J; Luo C; Lin J; Wang X; Li X; Bian X; Li Y; Wan Q; Yu Y; Feng H J Neurosurg Spine; 2010 Aug; 13(2):169-80. PubMed ID: 20672952 [TBL] [Abstract][Full Text] [Related]
12. The structural integrity of glial scar tissue associated with a chronic spinal cord lesion can be altered by transplanted fetal spinal cord tissue. Houle J J Neurosci Res; 1992 Jan; 31(1):120-30. PubMed ID: 1613818 [TBL] [Abstract][Full Text] [Related]
13. Differential activation of astrocytes and microglia after spinal cord injury in the fetal rat. Fujimoto Y; Yamasaki T; Tanaka N; Mochizuki Y; Kajihara H; Ikuta Y; Ochi M Eur Spine J; 2006 Feb; 15(2):223-33. PubMed ID: 16292632 [TBL] [Abstract][Full Text] [Related]
14. Post-spinal cord injury astrocyte-mediated functional recovery in rats after intraspinal injection of the recombinant adenoviral vectors Ad5-VEGF and Ad5-ANG. Povysheva T; Shmarov M; Logunov D; Naroditsky B; Shulman I; Ogurcov S; Kolesnikov P; Islamov R; Chelyshev Y J Neurosurg Spine; 2017 Jul; 27(1):105-115. PubMed ID: 28452633 [TBL] [Abstract][Full Text] [Related]
15. Early applied electric field stimulation attenuates secondary apoptotic responses and exerts neuroprotective effects in acute spinal cord injury of rats. Zhang C; Zhang G; Rong W; Wang A; Wu C; Huo X Neuroscience; 2015 Apr; 291():260-71. PubMed ID: 25701712 [TBL] [Abstract][Full Text] [Related]
16. In situ gelling hydrogels for conformal repair of spinal cord defects, and local delivery of BDNF after spinal cord injury. Jain A; Kim YT; McKeon RJ; Bellamkonda RV Biomaterials; 2006 Jan; 27(3):497-504. PubMed ID: 16099038 [TBL] [Abstract][Full Text] [Related]
17. Embryonic intermediate filament, nestin, expression following traumatic spinal cord injury in adult rats. Shibuya S; Miyamoto O; Auer RN; Itano T; Mori S; Norimatsu H Neuroscience; 2002; 114(4):905-16. PubMed ID: 12379246 [TBL] [Abstract][Full Text] [Related]
18. Altered immunoreactivity for glial fibrillary acidic protein in astrocytes within 1 h after cervical spinal cord injury. Hadley SD; Goshgarian HG Exp Neurol; 1997 Aug; 146(2):380-7. PubMed ID: 9270048 [TBL] [Abstract][Full Text] [Related]
19. MicroRNA-145 as one negative regulator of astrogliosis. Wang CY; Yang SH; Tzeng SF Glia; 2015 Feb; 63(2):194-205. PubMed ID: 25139829 [TBL] [Abstract][Full Text] [Related]
20. Essentiality of a specific cellular terrain for growth of axons into a spinal cord lesion. Guth L; Barrett CP; Donati EJ; Anderson FD; Smith MV; Lifson M Exp Neurol; 1985 Apr; 88(1):1-12. PubMed ID: 3979504 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]