These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 11577706)

  • 1. Spin-trapping study on the hydroxyl radical formed from a tea catechin-Cu(II) system.
    Yoshioka H; Senba Y; Saito K; Kimura T; Hayakawa F
    Biosci Biotechnol Biochem; 2001 Aug; 65(8):1697-706. PubMed ID: 11577706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel method of measuring hydroxyl radical-scavenging activity of antioxidants using gamma-irradiation.
    Yoshioka H; Ohashi Y; Akaboshi M; Senba Y; Yoshioka H
    Free Radic Res; 2001 Sep; 35(3):265-71. PubMed ID: 11697125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of plant phenolics on the formation of the spin-adduct of hydroxyl radical and the DNA strand breaking by hydroxyl radical.
    Hiramoto K; Ojima N; Sako K; Kikugawa K
    Biol Pharm Bull; 1996 Apr; 19(4):558-63. PubMed ID: 8860958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ESR study on the structure-antioxidant activity relationship of tea catechins and their epimers.
    Guo Q; Zhao B; Shen S; Hou J; Hu J; Xin W
    Biochim Biophys Acta; 1999 Mar; 1427(1):13-23. PubMed ID: 10082983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prooxidative activities of tea catechins in the presence of Cu2+.
    Hayakawa F; Ishizu Y; Hoshino N; Yamaji A; Ando T; Kimura T
    Biosci Biotechnol Biochem; 2004 Sep; 68(9):1825-30. PubMed ID: 15388955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct evidence for inhibition of free radical formation from Cu(I) and hydrogen peroxide by glutathione and other potential ligands using the EPR spin-trapping technique.
    Hanna PM; Mason RP
    Arch Biochem Biophys; 1992 May; 295(1):205-13. PubMed ID: 1315504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beta ray-induced scission of DNA in tritiated water and protection by a green tea percolate and (-)-epigallocatechin gallate.
    Yoshioka H; Kurosaki H; Yoshinaga K; Saito K; Yoshioka H
    Biosci Biotechnol Biochem; 1997 Sep; 61(9):1560-3. PubMed ID: 9339559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of artifactual DMPO-OH spin adduct in acid solutions containing nitrite ions.
    Takayanagi T; Kimiya H; Ohyama T
    Free Radic Res; 2017; 51(7-8):739-748. PubMed ID: 28817986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radical scavenging activity of tea catechins and their related compounds.
    Nanjo F; Mori M; Goto K; Hara Y
    Biosci Biotechnol Biochem; 1999 Sep; 63(9):1621-3. PubMed ID: 10610125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactive oxygen species generated from the reaction of copper(II) complexes with biological reductants cause DNA strand scission.
    Ueda J; Takai M; Shimazu Y; Ozawa T
    Arch Biochem Biophys; 1998 Sep; 357(2):231-9. PubMed ID: 9735163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A kinetic approach to the selection of a sensitive spin trapping system for the detection of hydroxyl radical.
    Pou S; Ramos CL; Gladwell T; Renks E; Centra M; Young D; Cohen MS; Rosen GM
    Anal Biochem; 1994 Feb; 217(1):76-83. PubMed ID: 8203741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Epigallocatechin Gallate on the Stability of Epicatechin in a Photolytic Process.
    Huang ST; Hung YA; Yang MJ; Chen IZ; Yuann JP; Liang JY
    Molecules; 2019 Feb; 24(4):. PubMed ID: 30813243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of thiyl radical adducts formed during hydroxyl radical- and peroxynitrite-mediated oxidation of thiols--a high resolution ESR spin-trapping study at Q-band (35 GHz).
    Kalyanaraman B; Karoui H; Singh RJ; Felix CC
    Anal Biochem; 1996 Oct; 241(1):75-81. PubMed ID: 8921168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Mechanism of interaction between risperidone and tea catechin (2) influence of presence of galloyl group in catechin on insoluble complex formation with risperidone].
    Ikeda H; Moriwaki H; Matsubara T; Yukawa M; Iwase Y; Yukawa E; Aki H
    Yakugaku Zasshi; 2012; 132(1):145-53. PubMed ID: 22214589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of hydrogen peroxide in bactericidal action of catechin.
    Arakawa H; Maeda M; Okubo S; Shimamura T
    Biol Pharm Bull; 2004 Mar; 27(3):277-81. PubMed ID: 14993788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EPR Evidence for Mechanistic Diversity of Cu(II)/Peroxygen Oxidation Systems by Tracing the Origin of DMPO Spin Adducts.
    Wang L; Fu Y; Li Q; Wang Z
    Environ Sci Technol; 2022 Jun; 56(12):8796-8806. PubMed ID: 35608900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potentiometric and (1)H NMR studies of complexation of Al(3+) with (-)-epigallocatechin gallate, a major active constituent of green tea.
    Inoue MB; Inoue M; Fernando Q; Valcic S; Timmermann BN
    J Inorg Biochem; 2002 Jan; 88(1):7-13. PubMed ID: 11750019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of Creaming Down Based on Chemical Characterization of a Complex of Caffeine and Tea Catechins.
    Ishizu T; Tsutsumi H; Sato T
    Chem Pharm Bull (Tokyo); 2016; 64(7):676-86. PubMed ID: 27373623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antioxidant properties of (-)-epicatechin-3-gallate and its inhibition of Cr(VI)-induced DNA damage and Cr(IV)- or TPA-stimulated NF-kappaB activation.
    Shi X; Ye J; Leonard SS; Ding M; Vallyathan V; Castranova V; Rojanasakul Y; Dong Z
    Mol Cell Biochem; 2000 Mar; 206(1-2):125-32. PubMed ID: 10839202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. UVA irradiation of riboflavin generates oxygen-dependent hydroxyl radicals.
    Sel S; Nass N; Pötzsch S; Trau S; Simm A; Kalinski T; Duncker GI; Kruse FE; Auffarth GU; Brömme HJ
    Redox Rep; 2014 Mar; 19(2):72-9. PubMed ID: 24257538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.