BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 11577706)

  • 1. Spin-trapping study on the hydroxyl radical formed from a tea catechin-Cu(II) system.
    Yoshioka H; Senba Y; Saito K; Kimura T; Hayakawa F
    Biosci Biotechnol Biochem; 2001 Aug; 65(8):1697-706. PubMed ID: 11577706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel method of measuring hydroxyl radical-scavenging activity of antioxidants using gamma-irradiation.
    Yoshioka H; Ohashi Y; Akaboshi M; Senba Y; Yoshioka H
    Free Radic Res; 2001 Sep; 35(3):265-71. PubMed ID: 11697125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of plant phenolics on the formation of the spin-adduct of hydroxyl radical and the DNA strand breaking by hydroxyl radical.
    Hiramoto K; Ojima N; Sako K; Kikugawa K
    Biol Pharm Bull; 1996 Apr; 19(4):558-63. PubMed ID: 8860958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ESR study on the structure-antioxidant activity relationship of tea catechins and their epimers.
    Guo Q; Zhao B; Shen S; Hou J; Hu J; Xin W
    Biochim Biophys Acta; 1999 Mar; 1427(1):13-23. PubMed ID: 10082983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prooxidative activities of tea catechins in the presence of Cu2+.
    Hayakawa F; Ishizu Y; Hoshino N; Yamaji A; Ando T; Kimura T
    Biosci Biotechnol Biochem; 2004 Sep; 68(9):1825-30. PubMed ID: 15388955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct evidence for inhibition of free radical formation from Cu(I) and hydrogen peroxide by glutathione and other potential ligands using the EPR spin-trapping technique.
    Hanna PM; Mason RP
    Arch Biochem Biophys; 1992 May; 295(1):205-13. PubMed ID: 1315504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beta ray-induced scission of DNA in tritiated water and protection by a green tea percolate and (-)-epigallocatechin gallate.
    Yoshioka H; Kurosaki H; Yoshinaga K; Saito K; Yoshioka H
    Biosci Biotechnol Biochem; 1997 Sep; 61(9):1560-3. PubMed ID: 9339559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of artifactual DMPO-OH spin adduct in acid solutions containing nitrite ions.
    Takayanagi T; Kimiya H; Ohyama T
    Free Radic Res; 2017; 51(7-8):739-748. PubMed ID: 28817986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radical scavenging activity of tea catechins and their related compounds.
    Nanjo F; Mori M; Goto K; Hara Y
    Biosci Biotechnol Biochem; 1999 Sep; 63(9):1621-3. PubMed ID: 10610125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactive oxygen species generated from the reaction of copper(II) complexes with biological reductants cause DNA strand scission.
    Ueda J; Takai M; Shimazu Y; Ozawa T
    Arch Biochem Biophys; 1998 Sep; 357(2):231-9. PubMed ID: 9735163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A kinetic approach to the selection of a sensitive spin trapping system for the detection of hydroxyl radical.
    Pou S; Ramos CL; Gladwell T; Renks E; Centra M; Young D; Cohen MS; Rosen GM
    Anal Biochem; 1994 Feb; 217(1):76-83. PubMed ID: 8203741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Epigallocatechin Gallate on the Stability of Epicatechin in a Photolytic Process.
    Huang ST; Hung YA; Yang MJ; Chen IZ; Yuann JP; Liang JY
    Molecules; 2019 Feb; 24(4):. PubMed ID: 30813243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of thiyl radical adducts formed during hydroxyl radical- and peroxynitrite-mediated oxidation of thiols--a high resolution ESR spin-trapping study at Q-band (35 GHz).
    Kalyanaraman B; Karoui H; Singh RJ; Felix CC
    Anal Biochem; 1996 Oct; 241(1):75-81. PubMed ID: 8921168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Mechanism of interaction between risperidone and tea catechin (2) influence of presence of galloyl group in catechin on insoluble complex formation with risperidone].
    Ikeda H; Moriwaki H; Matsubara T; Yukawa M; Iwase Y; Yukawa E; Aki H
    Yakugaku Zasshi; 2012; 132(1):145-53. PubMed ID: 22214589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of hydrogen peroxide in bactericidal action of catechin.
    Arakawa H; Maeda M; Okubo S; Shimamura T
    Biol Pharm Bull; 2004 Mar; 27(3):277-81. PubMed ID: 14993788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EPR Evidence for Mechanistic Diversity of Cu(II)/Peroxygen Oxidation Systems by Tracing the Origin of DMPO Spin Adducts.
    Wang L; Fu Y; Li Q; Wang Z
    Environ Sci Technol; 2022 Jun; 56(12):8796-8806. PubMed ID: 35608900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potentiometric and (1)H NMR studies of complexation of Al(3+) with (-)-epigallocatechin gallate, a major active constituent of green tea.
    Inoue MB; Inoue M; Fernando Q; Valcic S; Timmermann BN
    J Inorg Biochem; 2002 Jan; 88(1):7-13. PubMed ID: 11750019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of Creaming Down Based on Chemical Characterization of a Complex of Caffeine and Tea Catechins.
    Ishizu T; Tsutsumi H; Sato T
    Chem Pharm Bull (Tokyo); 2016; 64(7):676-86. PubMed ID: 27373623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antioxidant properties of (-)-epicatechin-3-gallate and its inhibition of Cr(VI)-induced DNA damage and Cr(IV)- or TPA-stimulated NF-kappaB activation.
    Shi X; Ye J; Leonard SS; Ding M; Vallyathan V; Castranova V; Rojanasakul Y; Dong Z
    Mol Cell Biochem; 2000 Mar; 206(1-2):125-32. PubMed ID: 10839202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. UVA irradiation of riboflavin generates oxygen-dependent hydroxyl radicals.
    Sel S; Nass N; Pötzsch S; Trau S; Simm A; Kalinski T; Duncker GI; Kruse FE; Auffarth GU; Brömme HJ
    Redox Rep; 2014 Mar; 19(2):72-9. PubMed ID: 24257538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.