These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 11578116)
21. Freezing or supercooling: how does an aquatic subterranean crustacean survive exposures at subzero temperatures? Issartel J; Voituron Y; Odagescu V; Baudot A; Guillot G; Ruaud JP; Renault D; Vernon P; Hervant F J Exp Biol; 2006 Sep; 209(Pt 17):3469-75. PubMed ID: 16916982 [TBL] [Abstract][Full Text] [Related]
22. Respiratory responses to chilling and freezing in two sub-antarctic insects. Block W; Worland MR; Bale J Cryobiology; 1998 Sep; 37(2):163-6. PubMed ID: 9769167 [TBL] [Abstract][Full Text] [Related]
23. The relationship between gut contents and supercooling capacity in hatchling painted turtles (Chrysemys picta). Packard GC; Packard MJ Comp Biochem Physiol A Mol Integr Physiol; 2006 May; 144(1):98-104. PubMed ID: 16580240 [TBL] [Abstract][Full Text] [Related]
24. Differential effects of growth temperature on ice nuclei active at different temperatures that are produced by cells of Pseudomonas syringae. Gurian-Sherman D; Lindow SE Cryobiology; 1995 Apr; 32(2):129-38. PubMed ID: 7743815 [TBL] [Abstract][Full Text] [Related]
25. Environmental physiology of three species of Collembola at Cape Hallett, North Victoria Land, Antarctica. Sinclair BJ; Terblanche JS; Scott MB; Blatch GL; Jaco Klok C; Chown SL J Insect Physiol; 2006 Jan; 52(1):29-50. PubMed ID: 16246360 [TBL] [Abstract][Full Text] [Related]
26. Identification of a novel ice-nucleating bacterium of Antarctic origin and its ice nucleation properties. Obata H; Muryoi N; Kawahara H; Yamade K; Nishikawa J Cryobiology; 1999 Mar; 38(2):131-9. PubMed ID: 10191036 [TBL] [Abstract][Full Text] [Related]
27. Natural genetic variation in acclimation capacity at sub-zero temperatures after cold acclimation at 4 degrees C in different Arabidopsis thaliana accessions. Le MQ; Engelsberger WR; Hincha DK Cryobiology; 2008 Oct; 57(2):104-12. PubMed ID: 18619434 [TBL] [Abstract][Full Text] [Related]
28. Intracellular freezing and survival in the freeze tolerant alpine cockroach Celatoblatta quinquemaculata. Worland MR; Wharton DA; Byars SG J Insect Physiol; 2004; 50(2-3):225-32. PubMed ID: 15019525 [TBL] [Abstract][Full Text] [Related]
29. Photoperiodic and thermal regulation of development and cold hardiness in larvae of the clover leaf weevil, Hypera punctata. Watanabe M Cryobiology; 2000 Jun; 40(4):294-301. PubMed ID: 10924261 [TBL] [Abstract][Full Text] [Related]
30. Characterization of antifreeze activity in Antarctic plants. Bravo LA; Griffith M J Exp Bot; 2005 Apr; 56(414):1189-96. PubMed ID: 15723822 [TBL] [Abstract][Full Text] [Related]
31. Anti-ice nucleation activity in xylem extracts from trees that contain deep supercooling xylem parenchyma cells. Kasuga J; Mizuno K; Arakawa K; Fujikawa S Cryobiology; 2007 Dec; 55(3):305-14. PubMed ID: 17936742 [TBL] [Abstract][Full Text] [Related]
33. Phenotypic plasticity of thermal tolerances in five oribatid mite species from sub-Antarctic Marion Island. Deere JA; Sinclair BJ; Marshall DJ; Chown SL J Insect Physiol; 2006 Jul; 52(7):693-700. PubMed ID: 16750541 [TBL] [Abstract][Full Text] [Related]
34. Heat tolerance and its plasticity in Antarctic fishes. Bilyk KT; Devries AL Comp Biochem Physiol A Mol Integr Physiol; 2011 Apr; 158(4):382-90. PubMed ID: 21159323 [TBL] [Abstract][Full Text] [Related]
35. Supercooling ability is surprisingly invariable in eggs of the land snail Cantareus aspersus. Ansart A; Madec L; Vernon P Cryobiology; 2007 Feb; 54(1):71-6. PubMed ID: 17189625 [TBL] [Abstract][Full Text] [Related]
36. Cold resistance in the lesser mealworm Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae). Salin C; Vernon P; Vannier G Cryo Letters; 2003; 24(2):111-8. PubMed ID: 12819832 [TBL] [Abstract][Full Text] [Related]
37. Deep supercooling xylem parenchyma cells of katsura tree (Cercidiphyllum japonicum) contain flavonol glycosides exhibiting high anti-ice nucleation activity. Kasuga J; Hashidoko Y; Nishioka A; Yoshiba M; Arakawa K; Fujikawa S Plant Cell Environ; 2008 Sep; 31(9):1335-48. PubMed ID: 18518920 [TBL] [Abstract][Full Text] [Related]
38. Effect of cold acclimation on the photosynthetic performance of two ecotypes of Colobanthus quitensis (Kunth) Bartl. Bravo LA; Saavedra-Mella FA; Vera F; Guerra A; Cavieres LA; Ivanov AG; Huner NP; Corcuera LJ J Exp Bot; 2007; 58(13):3581-90. PubMed ID: 18057038 [TBL] [Abstract][Full Text] [Related]
39. Diurnal variation in supercooling points of three species of Collembola from Cape Hallett, Antarctica. Sinclair BJ; Jaco Klok C; Scott MB; Terblanche JS; Chown SL J Insect Physiol; 2003 Nov; 49(11):1049-61. PubMed ID: 14568583 [TBL] [Abstract][Full Text] [Related]
40. Differences in cold and drought tolerance of high arctic and sub-arctic populations of Megaphorura arctica Tullberg 1876 (Onychiuridae: Collembola). Bahrndorff S; Petersen SO; Loeschcke V; Overgaard J; Holmstrup M Cryobiology; 2007 Dec; 55(3):315-23. PubMed ID: 17959162 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]