These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 11578312)
21. Bioconversion of n-octane to octanoic acid by a recombinant Escherichia coli cultured in a two-liquid phase bioreactor. Favre-Bulle O; Schouten T; Kingma J; Witholt B Biotechnology (N Y); 1991 Apr; 9(4):367-71. PubMed ID: 1367010 [TBL] [Abstract][Full Text] [Related]
22. New alkane-responsive expression vectors for Escherichia coli and pseudomonas. Smits TH; Seeger MA; Witholt B; van Beilen JB Plasmid; 2001 Jul; 46(1):16-24. PubMed ID: 11535032 [TBL] [Abstract][Full Text] [Related]
23. Assessment of heavy metal bioavailability in contaminated sediments and soils using green fluorescent protein-based bacterial biosensors. Liao VH; Chien MT; Tseng YY; Ou KL Environ Pollut; 2006 Jul; 142(1):17-23. PubMed ID: 16298031 [TBL] [Abstract][Full Text] [Related]
24. Escherichia coli survival in groundwater and effluent measured using a combination of propidium iodide and the green fluorescent protein. Banning N; Toze S; Mee BJ J Appl Microbiol; 2002; 93(1):69-76. PubMed ID: 12067376 [TBL] [Abstract][Full Text] [Related]
25. Application of fluorescent protein-tagged trans factors and immobilized cis elements to monitoring of toxic metals based on in vitro protein-DNA interactions. Kawakami Y; Siddiki MS; Inoue K; Otabayashi H; Yoshida K; Ueda S; Miyasaka H; Maeda I Biosens Bioelectron; 2010 Dec; 26(4):1466-73. PubMed ID: 20724137 [TBL] [Abstract][Full Text] [Related]
26. Two distinct monooxygenases for alkane oxidation in Nocardioides sp. strain CF8. Hamamura N; Yeager CM; Arp DJ Appl Environ Microbiol; 2001 Nov; 67(11):4992-8. PubMed ID: 11679317 [TBL] [Abstract][Full Text] [Related]
27. Determinants for overproduction of the Pseudomonas oleovorans cytoplasmic membrane protein alkane hydroxylase in alk+ Escherichia coli W3110. Nieboer M; Gunnewijk M; van Beilen JB; Witholt B J Bacteriol; 1997 Feb; 179(3):762-8. PubMed ID: 9006031 [TBL] [Abstract][Full Text] [Related]
28. A sensor for quantification of macromolecular crowding in living cells. Boersma AJ; Zuhorn IS; Poolman B Nat Methods; 2015 Mar; 12(3):227-9, 1 p following 229. PubMed ID: 25643150 [TBL] [Abstract][Full Text] [Related]
29. Comparison of two vectors for functional expression of a bacterial cytochrome P450 gene in Escherichia coli using CYP153 genes. Fujita N; Sumisa F; Shindo K; Kabumoto H; Arisawa A; Ikenaga H; Misawa N Biosci Biotechnol Biochem; 2009 Aug; 73(8):1825-30. PubMed ID: 19661686 [TBL] [Abstract][Full Text] [Related]
30. Protein mobility in the cytoplasm of Escherichia coli. Elowitz MB; Surette MG; Wolf PE; Stock JB; Leibler S J Bacteriol; 1999 Jan; 181(1):197-203. PubMed ID: 9864330 [TBL] [Abstract][Full Text] [Related]
31. Standoff detection of explosives and buried landmines using fluorescent bacterial sensor cells. Kabessa Y; Eyal O; Bar-On O; Korouma V; Yagur-Kroll S; Belkin S; Agranat AJ Biosens Bioelectron; 2016 May; 79():784-8. PubMed ID: 26774094 [TBL] [Abstract][Full Text] [Related]
32. [Phenol biodegradation by a Pseudomonas sp. strain tagged with the gfp gene]. Adylova AT; Chernikova TN; Abdukarimov AA Prikl Biokhim Mikrobiol; 2008; 44(3):308-13. PubMed ID: 18663954 [TBL] [Abstract][Full Text] [Related]
33. Synthesis of alkane hydroxylase of Pseudomonas oleovorans increases the iron requirement of alk+ bacterial strains. Staijen IE; Witholt B Biotechnol Bioeng; 1998 Jan; 57(2):228-37. PubMed ID: 10099198 [TBL] [Abstract][Full Text] [Related]
34. Assessment of the biodegradation potential of psychrotrophic microorganisms. Whyte LG; Greer CW; Inniss WE Can J Microbiol; 1996 Feb; 42(2):99-106. PubMed ID: 8742353 [TBL] [Abstract][Full Text] [Related]
35. Carbon-source-dependent expression of the PalkB promoter from the Pseudomonas oleovorans alkane degradation pathway. Yuste L; Canosa I; Rojo F J Bacteriol; 1998 Oct; 180(19):5218-26. PubMed ID: 9748457 [TBL] [Abstract][Full Text] [Related]
36. Repair in Escherichia coli alkB mutants of abasic sites and 3-methyladenine residues in DNA. Dinglay S; Gold B; Sedgwick B Mutat Res; 1998 Mar; 407(2):109-16. PubMed ID: 9637239 [TBL] [Abstract][Full Text] [Related]
37. Measurement of biologically available naphthalene in gas and aqueous phases by use of a Pseudomonas putida biosensor. Werlen C; Jaspers MC; van der Meer JR Appl Environ Microbiol; 2004 Jan; 70(1):43-51. PubMed ID: 14711624 [TBL] [Abstract][Full Text] [Related]
38. Detection of genes for alkane and naphthalene catabolism in Rhodococcus sp. strain 1BN. Andreoni V; Bernasconi S; Colombo M; van Beilen JB; Cavalca L Environ Microbiol; 2000 Oct; 2(5):572-7. PubMed ID: 11233165 [TBL] [Abstract][Full Text] [Related]
39. Engineering tunable biosensors for monitoring putrescine in Escherichia coli. Chen XF; Xia XX; Lee SY; Qian ZG Biotechnol Bioeng; 2018 Apr; 115(4):1014-1027. PubMed ID: 29251347 [TBL] [Abstract][Full Text] [Related]
40. Whole-cell hydroxylation of n-octane by Escherichia coli strains expressing the CYP153A6 operon. Gudiminchi RK; Randall C; Opperman DJ; Olaofe OA; Harrison ST; Albertyn J; Smit MS Appl Microbiol Biotechnol; 2012 Dec; 96(6):1507-16. PubMed ID: 22410745 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]