These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 11578828)

  • 21. Attending to a location in three-dimensional space modulates early ERPs.
    Kasai T; Morotomi T; Katayama J; Kumada T
    Brain Res Cogn Brain Res; 2003 Jul; 17(2):273-85. PubMed ID: 12880899
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ERP signs of categorical and supra-categorical processing of visual information.
    Zani A; Marsili G; Senerchia A; Orlandi A; Citron FM; Rizzi E; Proverbio AM
    Biol Psychol; 2015 Jan; 104():90-107. PubMed ID: 25447739
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Event-related potentials to conjunctions of spatial frequency and orientation as a function of stimulus parameters and response requirements.
    Kenemans JL; Kok A; Smulders FT
    Electroencephalogr Clin Neurophysiol; 1993; 88(1):51-63. PubMed ID: 7681391
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spatial attention triggered by eye gaze increases and speeds up early visual activity.
    Schuller AM; Rossion B
    Neuroreport; 2001 Aug; 12(11):2381-6. PubMed ID: 11496114
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Visual completion processing in human face perception.
    Chu XL; Wang YH; Wang YP
    Clin EEG Neurosci; 2007 Jan; 38(1):49-54. PubMed ID: 17319591
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Top-Down Attention Is Limited Within but Not Between Feature Dimensions.
    Adamian N; Slaustaite E; Andersen SK
    J Cogn Neurosci; 2019 Aug; 31(8):1173-1183. PubMed ID: 30794058
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Changing the spatial scope of attention alters patterns of neural gain in human cortex.
    Itthipuripat S; Garcia JO; Rungratsameetaweemana N; Sprague TC; Serences JT
    J Neurosci; 2014 Jan; 34(1):112-23. PubMed ID: 24381272
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neural correlates of pre-attentive and attentive processing of visual changes.
    Kimura M; Katayama J; Murohashi H
    Neuroreport; 2005 Dec; 16(18):2061-4. PubMed ID: 16317355
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microsaccade-related brain potentials signal the focus of visuospatial attention.
    Meyberg S; Werkle-Bergner M; Sommer W; Dimigen O
    Neuroimage; 2015 Jan; 104():79-88. PubMed ID: 25285375
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Covert enaction at work: Recording the continuous movements of visuospatial attention to visible or imagined targets by means of Steady-State Visual Evoked Potentials (SSVEPs).
    Gregori Grgič R; Calore E; de'Sperati C
    Cortex; 2016 Jan; 74():31-52. PubMed ID: 26615517
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An ERP study of visual spatial attention and letter target detection for isoluminant and nonisoluminant stimuli.
    Wijers AA; Lange JJ; Mulder G; Mulder LJ
    Psychophysiology; 1997 Sep; 34(5):553-65. PubMed ID: 9299910
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Visual event-related potential changes in multiple system atrophy: delayed N2 latency in selective attention to a color task.
    Kamitani T; Kuroiwa Y
    Parkinsonism Relat Disord; 2009 Jan; 15(1):36-40. PubMed ID: 18396089
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Luminance and spatial attention effects on early visual processing.
    Johannes S; Münte TF; Heinze HJ; Mangun GR
    Brain Res Cogn Brain Res; 1995 Jul; 2(3):189-205. PubMed ID: 7580401
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Correspondence of visual evoked potentials with FMRI signals in human visual cortex.
    Whittingstall K; Wilson D; Schmidt M; Stroink G
    Brain Topogr; 2008 Dec; 21(2):86-92. PubMed ID: 18841455
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Perceptual load affects spatial and nonspatial visual selection processes: an event-related brain potential study.
    Barnhardt J; Ritter W; Gomes H
    Neuropsychologia; 2008; 46(7):2071-8. PubMed ID: 18355882
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Are objects the same as groups? ERP correlates of spatial attentional guidance by irrelevant feature similarity.
    Kasai T; Moriya H; Hirano S
    Brain Res; 2011 Jul; 1399():49-58. PubMed ID: 21652032
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Visual event-related potentials in elite and amateur athletes.
    Del Percio C; Brancucci A; Vecchio F; Marzano N; Pirritano M; Meccariello E; Padoa S; Mascia A; Giallonardo AT; Aschieri P; Lino A; Palma E; Fiore A; Di Ciolo E; Babiloni C; Eusebi F
    Brain Res Bull; 2007 Sep; 74(1-3):104-12. PubMed ID: 17683795
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selective attention to spatial frequency gratings affects visual processing as early as 60 msec. poststimulus.
    Zani A; Proverbio AM
    Percept Mot Skills; 2009 Aug; 109(1):140-58. PubMed ID: 19831095
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrical neuroimaging evidence that spatial frequency-based selective attention affects V1 activity as early as 40-60 ms in humans.
    Proverbio AM; Del Zotto M; Zani A
    BMC Neurosci; 2010 May; 11():59. PubMed ID: 20459601
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spatial attention triggered by eye gaze enhances and speeds up visual processing in upper and lower visual fields beyond early striate visual processing.
    Schuller AM; Rossion B
    Clin Neurophysiol; 2005 Nov; 116(11):2565-76. PubMed ID: 16221564
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.