These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 11578967)

  • 1. Control of RNA polymerase II activity by dedicated CTD kinases and phosphatases.
    Majello B; Napolitano G
    Front Biosci; 2001 Oct; 6():D1358-68. PubMed ID: 11578967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional activity of positive transcription elongation factor b kinase in vivo requires the C-terminal domain of RNA polymerase II.
    Napolitano G; Majello B; Licciardo P; Giordano A; Lania L
    Gene; 2000 Aug; 254(1-2):139-45. PubMed ID: 10974544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct evidence that HIV-1 Tat stimulates RNA polymerase II carboxyl-terminal domain hyperphosphorylation during transcriptional elongation.
    Isel C; Karn J
    J Mol Biol; 1999 Jul; 290(5):929-41. PubMed ID: 10438593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II.
    Lu H; Yu D; Hansen AS; Ganguly S; Liu R; Heckert A; Darzacq X; Zhou Q
    Nature; 2018 Jun; 558(7709):318-323. PubMed ID: 29849146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclin K functions as a CDK9 regulatory subunit and participates in RNA polymerase II transcription.
    Fu TJ; Peng J; Lee G; Price DH; Flores O
    J Biol Chem; 1999 Dec; 274(49):34527-30. PubMed ID: 10574912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain.
    Cho EJ; Kobor MS; Kim M; Greenblatt J; Buratowski S
    Genes Dev; 2001 Dec; 15(24):3319-29. PubMed ID: 11751637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorylation of the RNA polymerase II carboxyl-terminal domain by CDK9 is directly responsible for human immunodeficiency virus type 1 Tat-activated transcriptional elongation.
    Kim YK; Bourgeois CF; Isel C; Churcher MJ; Karn J
    Mol Cell Biol; 2002 Jul; 22(13):4622-37. PubMed ID: 12052871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular control of gene expression by T-type cyclin/CDK9 complexes.
    Garriga J; Graña X
    Gene; 2004 Aug; 337():15-23. PubMed ID: 15276198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CDK9 keeps RNA polymerase II on track.
    Egloff S
    Cell Mol Life Sci; 2021 Jul; 78(14):5543-5567. PubMed ID: 34146121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence that P-TEFb alleviates the negative effect of DSIF on RNA polymerase II-dependent transcription in vitro.
    Wada T; Takagi T; Yamaguchi Y; Watanabe D; Handa H
    EMBO J; 1998 Dec; 17(24):7395-403. PubMed ID: 9857195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The C-terminal domain phosphatase and transcription elongation activities of FCP1 are regulated by phosphorylation.
    Friedl EM; Lane WS; Erdjument-Bromage H; Tempst P; Reinberg D
    Proc Natl Acad Sci U S A; 2003 Mar; 100(5):2328-33. PubMed ID: 12591939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes.
    Nguyen VT; Kiss T; Michels AA; Bensaude O
    Nature; 2001 Nov; 414(6861):322-5. PubMed ID: 11713533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyclin-dependent kinase-9: an RNAPII kinase at the nexus of cardiac growth and death cascades.
    Sano M; Schneider MD
    Circ Res; 2004 Oct; 95(9):867-76. PubMed ID: 15514168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of transcription elongation by phosphorylation.
    Kobor MS; Greenblatt J
    Biochim Biophys Acta; 2002 Sep; 1577(2):261-275. PubMed ID: 12213657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorylation of RNA polymerase II in cardiac hypertrophy: cell enlargement signals converge on cyclin T/Cdk9.
    Kulkarni PA; Sano M; Schneider MD
    Recent Prog Horm Res; 2004; 59():125-39. PubMed ID: 14749500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A protein phosphatase functions to recycle RNA polymerase II.
    Cho H; Kim TK; Mancebo H; Lane WS; Flores O; Reinberg D
    Genes Dev; 1999 Jun; 13(12):1540-52. PubMed ID: 10385623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction between P-TEFb and the C-terminal domain of RNA polymerase II activates transcriptional elongation from sites upstream or downstream of target genes.
    Taube R; Lin X; Irwin D; Fujinaga K; Peterlin BM
    Mol Cell Biol; 2002 Jan; 22(1):321-31. PubMed ID: 11739744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. P-TEFb containing cyclin K and Cdk9 can activate transcription via RNA.
    Lin X; Taube R; Fujinaga K; Peterlin BM
    J Biol Chem; 2002 May; 277(19):16873-8. PubMed ID: 11884399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA polymerase II transcription elongation and Pol II CTD Ser2 phosphorylation: A tail of two kinases.
    Bowman EA; Kelly WG
    Nucleus; 2014; 5(3):224-36. PubMed ID: 24879308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein phosphatase-1 dephosphorylates the C-terminal domain of RNA polymerase-II.
    Washington K; Ammosova T; Beullens M; Jerebtsova M; Kumar A; Bollen M; Nekhai S
    J Biol Chem; 2002 Oct; 277(43):40442-8. PubMed ID: 12185079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.