BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

391 related articles for article (PubMed ID: 11579170)

  • 1. Divergent roles of glycolysis and the mitochondrial electron transport chain in hypoxic pulmonary vasoconstriction of the rat: identity of the hypoxic sensor.
    Leach RM; Hill HM; Snetkov VA; Robertson TP; Ward JP
    J Physiol; 2001 Oct; 536(Pt 1):211-24. PubMed ID: 11579170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of mitochondrial inhibitors and uncouplers on hypoxic vasoconstriction in rabbit lungs.
    Weissmann N; Ebert N; Ahrens M; Ghofrani HA; Schermuly RT; Hänze J; Fink L; Rose F; Conzen J; Seeger W; Grimminger F
    Am J Respir Cell Mol Biol; 2003 Dec; 29(6):721-32. PubMed ID: 12791676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model for hypoxic pulmonary vasoconstriction involving mitochondrial oxygen sensing.
    Waypa GB; Chandel NS; Schumacker PT
    Circ Res; 2001 Jun; 88(12):1259-66. PubMed ID: 11420302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neutral sphingomyelinase, NADPH oxidase and reactive oxygen species. Role in acute hypoxic pulmonary vasoconstriction.
    Frazziano G; Moreno L; Moral-Sanz J; Menendez C; Escolano L; Gonzalez C; Villamor E; Alvarez-Sala JL; Cogolludo AL; Perez-Vizcaino F
    J Cell Physiol; 2011 Oct; 226(10):2633-40. PubMed ID: 21792922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The vein utilizes different sources of energy than the artery during pulmonary hypoxic vasoconstriction.
    Zhao Y; Packer CS; Rhoades RA
    Exp Lung Res; 1996; 22(1):51-63. PubMed ID: 8838135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voltage-independent calcium entry in hypoxic pulmonary vasoconstriction of intrapulmonary arteries of the rat.
    Robertson TP; Hague D; Aaronson PI; Ward JP
    J Physiol; 2000 Jun; 525 Pt 3(Pt 3):669-80. PubMed ID: 10856120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ndufs2, a Core Subunit of Mitochondrial Complex I, Is Essential for Acute Oxygen-Sensing and Hypoxic Pulmonary Vasoconstriction.
    Dunham-Snary KJ; Wu D; Potus F; Sykes EA; Mewburn JD; Charles RL; Eaton P; Sultanian RA; Archer SL
    Circ Res; 2019 Jun; 124(12):1727-1746. PubMed ID: 30922174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ca2+ sensitization during sustained hypoxic pulmonary vasoconstriction is endothelium dependent.
    Robertson TP; Aaronson PI; Ward JP
    Am J Physiol Lung Cell Mol Physiol; 2003 Jun; 284(6):L1121-6. PubMed ID: 12611819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles of different mitochondrial electron transport chain complexes in hypoxia-induced pulmonary vasoconstriction.
    Yang Z; Zhuan B; Yan Y; Jiang S; Wang T
    Cell Biol Int; 2016 Feb; 40(2):188-95. PubMed ID: 26454147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypoxic pulmonary vasoconstriction in the absence of pretone: essential role for intracellular Ca2+ release.
    Connolly MJ; Prieto-Lloret J; Becker S; Ward JP; Aaronson PI
    J Physiol; 2013 Sep; 591(18):4473-98. PubMed ID: 23774281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypoxic pulmonary vasoconstriction: redox regulation of O2-sensitive K+ channels by a mitochondrial O2-sensor in resistance artery smooth muscle cells.
    Michelakis ED; Thébaud B; Weir EK; Archer SL
    J Mol Cell Cardiol; 2004 Dec; 37(6):1119-36. PubMed ID: 15572043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gap junctions support the sustained phase of hypoxic pulmonary vasoconstriction by facilitating calcium sensitization.
    Kizub IV; Strielkov IV; Shaifta Y; Becker S; Prieto-Lloret J; Snetkov VA; Soloviev AI; Aaronson PI; Ward JP
    Cardiovasc Res; 2013 Aug; 99(3):404-11. PubMed ID: 23708740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypoxic pulmonary vasoconstriction in isolated rat pulmonary arteries is not inhibited by antagonists of H2 S-synthesizing pathways.
    Prieto-Lloret J; Shaifta Y; Ward JP; Aaronson PI
    J Physiol; 2015 Jan; 593(2):385-401. PubMed ID: 25630260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of mitochondrial inhibitors on membrane currents in isolated neonatal rat carotid body type I cells.
    Wyatt CN; Buckler KJ
    J Physiol; 2004 Apr; 556(Pt 1):175-91. PubMed ID: 14724184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular identification of O2 sensors and O2-sensitive potassium channels in the pulmonary circulation.
    Archer SL; Weir EK; Reeve HL; Michelakis E
    Adv Exp Med Biol; 2000; 475():219-40. PubMed ID: 10849663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A redox-based O2 sensor in rat pulmonary vasculature.
    Archer SL; Huang J; Henry T; Peterson D; Weir EK
    Circ Res; 1993 Dec; 73(6):1100-12. PubMed ID: 8222081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential contribution of mitochondria, NADPH oxidases, and glycolysis to region-specific oxidant stress in the anoxic-reoxygenated embryonic heart.
    Raddatz E; Thomas AC; Sarre A; Benathan M
    Am J Physiol Heart Circ Physiol; 2011 Mar; 300(3):H820-35. PubMed ID: 21193588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of oxidative metabolism on endothelium-dependent vascular relaxation of isolated vessels.
    Cappelli-Bigazzi M; Battaglia C; Pannain S; Chiariello M; Ambrosio G
    J Mol Cell Cardiol; 1997 Mar; 29(3):871-9. PubMed ID: 9152848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial cytochrome redox states and respiration in acute pulmonary oxygen sensing.
    Sommer N; Pak O; Schörner S; Derfuss T; Krug A; Gnaiger E; Ghofrani HA; Schermuly RT; Huckstorf C; Seeger W; Grimminger F; Weissmann N
    Eur Respir J; 2010 Nov; 36(5):1056-66. PubMed ID: 20516051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of src-family kinases in hypoxic vasoconstriction of rat pulmonary artery.
    Knock GA; Snetkov VA; Shaifta Y; Drndarski S; Ward JP; Aaronson PI
    Cardiovasc Res; 2008 Dec; 80(3):453-62. PubMed ID: 18682436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.